Liuqing Xi , Juan Du , Wen Xue , Kan Shao , Xiaohong Jiang , Wenfang Peng , Wenyi Li , Shan Huang
{"title":"卡特里西丁 LL-37 通过调节 TFEB 依赖性自噬促进糖尿病小鼠的伤口愈合。","authors":"Liuqing Xi , Juan Du , Wen Xue , Kan Shao , Xiaohong Jiang , Wenfang Peng , Wenyi Li , Shan Huang","doi":"10.1016/j.peptides.2024.171183","DOIUrl":null,"url":null,"abstract":"<div><p>Diabetic patients often experience impaired wound healing. Human cathelicidin LL-37 possesses various biological functions, such as anti-microbial, anti-inflammatory, and pro-wound healing activities. Autophagy has important effects on skin wound healing. However, little is known about whether LL-37 accelerates diabetic wound healing by regulating autophagy. In the study, we aimed to investigate the role of autophagy in LL-37-induced wound healing and uncover the underlying mechanisms involved. A full-thickness wound closure model was established in diabetic mice to evaluate the effects of LL-37 and an autophagy inhibitor (3-MA) on wound healing. The roles of LL-37 and 3-MA in regulating keratinocyte migration were assessed using transwell migration and wound healing assays. The activation of transcription factor EB (TFEB) was measured using western blotting and immunofluorescence (IF) assays of its nuclear translocation. The results showed that LL-37 treatment improved wound healing in diabetic mice, whereas these effects were reversed by 3-MA. <em>In vitro</em>, 3-MA decreased the effects of LL-37 on promoting HaCat keratinocyte migration in the presence of high glucose (HG). Mechanistically, LL-37 promoted TFEB activation and resulted in subsequent activation of autophagy, as evidenced by increased nuclear translocation of TFEB and increased expression of ATG5, ATG7, and beclin 1 (BECN1), whereas these changes were blocked by TFEB knockdown. As expected, TFEB knockdown damaged the effects of LL-37 on promoting keratinocyte migration. Collectively, these results suggest that LL-37 accelerates wound healing in diabetic mice by activating TFEB-dependent autophagy, providing new insights into the mechanism by which LL-37 promotes diabetic wound healing.</p></div>","PeriodicalId":19765,"journal":{"name":"Peptides","volume":"175 ","pages":"Article 171183"},"PeriodicalIF":2.8000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cathelicidin LL-37 promotes wound healing in diabetic mice by regulating TFEB-dependent autophagy\",\"authors\":\"Liuqing Xi , Juan Du , Wen Xue , Kan Shao , Xiaohong Jiang , Wenfang Peng , Wenyi Li , Shan Huang\",\"doi\":\"10.1016/j.peptides.2024.171183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Diabetic patients often experience impaired wound healing. Human cathelicidin LL-37 possesses various biological functions, such as anti-microbial, anti-inflammatory, and pro-wound healing activities. Autophagy has important effects on skin wound healing. However, little is known about whether LL-37 accelerates diabetic wound healing by regulating autophagy. In the study, we aimed to investigate the role of autophagy in LL-37-induced wound healing and uncover the underlying mechanisms involved. A full-thickness wound closure model was established in diabetic mice to evaluate the effects of LL-37 and an autophagy inhibitor (3-MA) on wound healing. The roles of LL-37 and 3-MA in regulating keratinocyte migration were assessed using transwell migration and wound healing assays. The activation of transcription factor EB (TFEB) was measured using western blotting and immunofluorescence (IF) assays of its nuclear translocation. The results showed that LL-37 treatment improved wound healing in diabetic mice, whereas these effects were reversed by 3-MA. <em>In vitro</em>, 3-MA decreased the effects of LL-37 on promoting HaCat keratinocyte migration in the presence of high glucose (HG). Mechanistically, LL-37 promoted TFEB activation and resulted in subsequent activation of autophagy, as evidenced by increased nuclear translocation of TFEB and increased expression of ATG5, ATG7, and beclin 1 (BECN1), whereas these changes were blocked by TFEB knockdown. As expected, TFEB knockdown damaged the effects of LL-37 on promoting keratinocyte migration. Collectively, these results suggest that LL-37 accelerates wound healing in diabetic mice by activating TFEB-dependent autophagy, providing new insights into the mechanism by which LL-37 promotes diabetic wound healing.</p></div>\",\"PeriodicalId\":19765,\"journal\":{\"name\":\"Peptides\",\"volume\":\"175 \",\"pages\":\"Article 171183\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peptides\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196978124000366\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peptides","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196978124000366","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Cathelicidin LL-37 promotes wound healing in diabetic mice by regulating TFEB-dependent autophagy
Diabetic patients often experience impaired wound healing. Human cathelicidin LL-37 possesses various biological functions, such as anti-microbial, anti-inflammatory, and pro-wound healing activities. Autophagy has important effects on skin wound healing. However, little is known about whether LL-37 accelerates diabetic wound healing by regulating autophagy. In the study, we aimed to investigate the role of autophagy in LL-37-induced wound healing and uncover the underlying mechanisms involved. A full-thickness wound closure model was established in diabetic mice to evaluate the effects of LL-37 and an autophagy inhibitor (3-MA) on wound healing. The roles of LL-37 and 3-MA in regulating keratinocyte migration were assessed using transwell migration and wound healing assays. The activation of transcription factor EB (TFEB) was measured using western blotting and immunofluorescence (IF) assays of its nuclear translocation. The results showed that LL-37 treatment improved wound healing in diabetic mice, whereas these effects were reversed by 3-MA. In vitro, 3-MA decreased the effects of LL-37 on promoting HaCat keratinocyte migration in the presence of high glucose (HG). Mechanistically, LL-37 promoted TFEB activation and resulted in subsequent activation of autophagy, as evidenced by increased nuclear translocation of TFEB and increased expression of ATG5, ATG7, and beclin 1 (BECN1), whereas these changes were blocked by TFEB knockdown. As expected, TFEB knockdown damaged the effects of LL-37 on promoting keratinocyte migration. Collectively, these results suggest that LL-37 accelerates wound healing in diabetic mice by activating TFEB-dependent autophagy, providing new insights into the mechanism by which LL-37 promotes diabetic wound healing.
期刊介绍:
Peptides is an international journal presenting original contributions on the biochemistry, physiology and pharmacology of biological active peptides, as well as their functions that relate to gastroenterology, endocrinology, and behavioral effects.
Peptides emphasizes all aspects of high profile peptide research in mammals and non-mammalian vertebrates. Special consideration can be given to plants and invertebrates. Submission of articles with clinical relevance is particularly encouraged.