YAP/TEAD参与肺癌紫杉醇化疗的耐药性研究

IF 3.5 2区 生物学 Q3 CELL BIOLOGY
Molecular and Cellular Biochemistry Pub Date : 2025-01-01 Epub Date: 2024-03-01 DOI:10.1007/s11010-024-04949-7
S Brosseau, P Abreu, C Bouchez, L Charon, Y Kieffer, G Gentric, V Picant, I Veith, J Camonis, S Descroix, F Mechta-Grigoriou, M C Parrini, G Zalcman
{"title":"YAP/TEAD参与肺癌紫杉醇化疗的耐药性研究","authors":"S Brosseau, P Abreu, C Bouchez, L Charon, Y Kieffer, G Gentric, V Picant, I Veith, J Camonis, S Descroix, F Mechta-Grigoriou, M C Parrini, G Zalcman","doi":"10.1007/s11010-024-04949-7","DOIUrl":null,"url":null,"abstract":"<p><p>The Yes-associated protein (YAP) oncoprotein has been linked to both metastases and resistance to targeted therapy of lung cancer cells. We aimed to investigate the effect of YAP pharmacological inhibition, using YAP/TEA domain (TEAD) transcription factor interaction inhibitors in chemo-resistant lung cancer cells. YAP subcellular localization, as a readout for YAP activation, cell migration, and TEAD transcription factor functional transcriptional activity were investigated in cancer cell lines with up-regulated YAP, with and without YAP/TEAD interaction inhibitors. Parental (A549) and paclitaxel-resistant (A549R) cell transcriptomes were analyzed. The half-maximal inhibitory concentration (IC<sub>50</sub>) of paclitaxel or trametinib, which are Mitogen-Activated protein kinase and Erk Kinase (MEK) inhibitors, combined with a YAP/TEAD inhibitor (IV#6), was determined. A three-dimensional (3D) microfluidic culture device enabled us to study the effect of IV#6/paclitaxel combination on cancer cells isolated from fresh resected lung cancer samples. YAP activity was significantly higher in paclitaxel-resistant cell lines. The YAP/TEAD inhibitor induced a decreased YAP activity in A549, PC9, and H2052 cells, with reduced YAP nuclear staining. Wound healing assays upon YAP inhibition revealed impaired cell motility of lung cancer A549 and mesothelioma H2052 cells. Combining YAP pharmacological inhibition with trametinib in K-Ras mutated A549 cells recapitulated synthetic lethality, thereby sensitizing these cells to MEK inhibition. The YAP/TEAD inhibitor lowered the IC<sub>50</sub> of paclitaxel in A549R cells. Differential transcriptomic analysis of parental and A549R cells revealed an increased YAP/TEAD transcriptomic signature in resistant cells, downregulated upon YAP inhibition. The YAP/TEAD inhibitor restored paclitaxel sensitivity of A549R cells cultured in a 3D microfluidic system, with lung cancer cells from a fresh tumor efficiently killed by YAP/TEAD inhibitor/paclitaxel doublet. Evidence of the YAP/TEAD transcriptional program's role in chemotherapy resistance paves the way for YAP therapeutic targeting.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"231-248"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"YAP/TEAD involvement in resistance to paclitaxel chemotherapy in lung cancer.\",\"authors\":\"S Brosseau, P Abreu, C Bouchez, L Charon, Y Kieffer, G Gentric, V Picant, I Veith, J Camonis, S Descroix, F Mechta-Grigoriou, M C Parrini, G Zalcman\",\"doi\":\"10.1007/s11010-024-04949-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Yes-associated protein (YAP) oncoprotein has been linked to both metastases and resistance to targeted therapy of lung cancer cells. We aimed to investigate the effect of YAP pharmacological inhibition, using YAP/TEA domain (TEAD) transcription factor interaction inhibitors in chemo-resistant lung cancer cells. YAP subcellular localization, as a readout for YAP activation, cell migration, and TEAD transcription factor functional transcriptional activity were investigated in cancer cell lines with up-regulated YAP, with and without YAP/TEAD interaction inhibitors. Parental (A549) and paclitaxel-resistant (A549R) cell transcriptomes were analyzed. The half-maximal inhibitory concentration (IC<sub>50</sub>) of paclitaxel or trametinib, which are Mitogen-Activated protein kinase and Erk Kinase (MEK) inhibitors, combined with a YAP/TEAD inhibitor (IV#6), was determined. A three-dimensional (3D) microfluidic culture device enabled us to study the effect of IV#6/paclitaxel combination on cancer cells isolated from fresh resected lung cancer samples. YAP activity was significantly higher in paclitaxel-resistant cell lines. The YAP/TEAD inhibitor induced a decreased YAP activity in A549, PC9, and H2052 cells, with reduced YAP nuclear staining. Wound healing assays upon YAP inhibition revealed impaired cell motility of lung cancer A549 and mesothelioma H2052 cells. Combining YAP pharmacological inhibition with trametinib in K-Ras mutated A549 cells recapitulated synthetic lethality, thereby sensitizing these cells to MEK inhibition. The YAP/TEAD inhibitor lowered the IC<sub>50</sub> of paclitaxel in A549R cells. Differential transcriptomic analysis of parental and A549R cells revealed an increased YAP/TEAD transcriptomic signature in resistant cells, downregulated upon YAP inhibition. The YAP/TEAD inhibitor restored paclitaxel sensitivity of A549R cells cultured in a 3D microfluidic system, with lung cancer cells from a fresh tumor efficiently killed by YAP/TEAD inhibitor/paclitaxel doublet. Evidence of the YAP/TEAD transcriptional program's role in chemotherapy resistance paves the way for YAP therapeutic targeting.</p>\",\"PeriodicalId\":18724,\"journal\":{\"name\":\"Molecular and Cellular Biochemistry\",\"volume\":\" \",\"pages\":\"231-248\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11010-024-04949-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-024-04949-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Yes相关蛋白(YAP)肿瘤蛋白与肺癌细胞的转移和对靶向治疗的耐药性有关。我们的目的是利用YAP/TEA结构域(TEAD)转录因子相互作用抑制剂,研究药理抑制YAP对化疗耐药肺癌细胞的影响。在使用或不使用 YAP/TEAD 相互作用抑制剂的 YAP 上调癌细胞系中,研究了 YAP 亚细胞定位(作为 YAP 激活、细胞迁移和 TEAD 转录因子功能性转录活性的读数)。对亲本(A549)和紫杉醇抗性(A549R)细胞转录组进行了分析。测定了紫杉醇或曲美替尼与 YAP/TEAD 抑制剂(IV#6)联合使用的半最大抑制浓度(IC50)。通过三维(3D)微流体培养装置,我们研究了IV#6/紫杉醇组合对从新鲜切除肺癌样本中分离的癌细胞的影响。紫杉醇耐药细胞株的 YAP 活性明显更高。YAP/TEAD抑制剂诱导A549、PC9和H2052细胞的YAP活性降低,YAP核染色减少。抑制 YAP 后进行的伤口愈合试验显示,肺癌 A549 和间皮瘤 H2052 细胞的细胞运动能力受损。在K-Ras突变的A549细胞中将YAP药理抑制与曲美替尼相结合,可重现合成致死率,从而使这些细胞对MEK抑制敏感。YAP/TEAD抑制剂降低了紫杉醇在A549R细胞中的IC50。亲代细胞和 A549R 细胞的差异转录组分析表明,耐药细胞中的 YAP/TEAD 转录组特征增加,YAP 抑制后转录组特征下调。YAP/TEAD抑制剂恢复了在三维微流控系统中培养的A549R细胞对紫杉醇的敏感性,来自新鲜肿瘤的肺癌细胞被YAP/TEAD抑制剂/紫杉醇双联物有效杀死。YAP/TEAD转录程序在化疗耐药性中的作用为YAP靶向治疗铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

YAP/TEAD involvement in resistance to paclitaxel chemotherapy in lung cancer.

YAP/TEAD involvement in resistance to paclitaxel chemotherapy in lung cancer.

The Yes-associated protein (YAP) oncoprotein has been linked to both metastases and resistance to targeted therapy of lung cancer cells. We aimed to investigate the effect of YAP pharmacological inhibition, using YAP/TEA domain (TEAD) transcription factor interaction inhibitors in chemo-resistant lung cancer cells. YAP subcellular localization, as a readout for YAP activation, cell migration, and TEAD transcription factor functional transcriptional activity were investigated in cancer cell lines with up-regulated YAP, with and without YAP/TEAD interaction inhibitors. Parental (A549) and paclitaxel-resistant (A549R) cell transcriptomes were analyzed. The half-maximal inhibitory concentration (IC50) of paclitaxel or trametinib, which are Mitogen-Activated protein kinase and Erk Kinase (MEK) inhibitors, combined with a YAP/TEAD inhibitor (IV#6), was determined. A three-dimensional (3D) microfluidic culture device enabled us to study the effect of IV#6/paclitaxel combination on cancer cells isolated from fresh resected lung cancer samples. YAP activity was significantly higher in paclitaxel-resistant cell lines. The YAP/TEAD inhibitor induced a decreased YAP activity in A549, PC9, and H2052 cells, with reduced YAP nuclear staining. Wound healing assays upon YAP inhibition revealed impaired cell motility of lung cancer A549 and mesothelioma H2052 cells. Combining YAP pharmacological inhibition with trametinib in K-Ras mutated A549 cells recapitulated synthetic lethality, thereby sensitizing these cells to MEK inhibition. The YAP/TEAD inhibitor lowered the IC50 of paclitaxel in A549R cells. Differential transcriptomic analysis of parental and A549R cells revealed an increased YAP/TEAD transcriptomic signature in resistant cells, downregulated upon YAP inhibition. The YAP/TEAD inhibitor restored paclitaxel sensitivity of A549R cells cultured in a 3D microfluidic system, with lung cancer cells from a fresh tumor efficiently killed by YAP/TEAD inhibitor/paclitaxel doublet. Evidence of the YAP/TEAD transcriptional program's role in chemotherapy resistance paves the way for YAP therapeutic targeting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular and Cellular Biochemistry
Molecular and Cellular Biochemistry 生物-细胞生物学
CiteScore
8.30
自引率
2.30%
发文量
293
审稿时长
1.7 months
期刊介绍: Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell. In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信