带有突变和生成式对抗网络的洛特卡-沃尔特拉模型

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
S. V. Kozyrev
{"title":"带有突变和生成式对抗网络的洛特卡-沃尔特拉模型","authors":"S. V. Kozyrev","doi":"10.1134/S0040577924020077","DOIUrl":null,"url":null,"abstract":"<p> A model of population genetics of the Lotka–Volterra type with mutations on a statistical manifold is introduced. Mutations in the model are described by diffusion on a statistical manifold with a generator in the form of a Laplace–Beltrami operator with a Fisher–Rao metric, that is, the model combines population genetics and information geometry. This model describes a generalization of the model of machine learning theory, the model of generative adversarial network (GAN), to the case of populations of generative adversarial networks. The introduced model describes the control of overfitting for generating adversarial networks. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lotka–Volterra model with mutations and generative adversarial networks\",\"authors\":\"S. V. Kozyrev\",\"doi\":\"10.1134/S0040577924020077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> A model of population genetics of the Lotka–Volterra type with mutations on a statistical manifold is introduced. Mutations in the model are described by diffusion on a statistical manifold with a generator in the form of a Laplace–Beltrami operator with a Fisher–Rao metric, that is, the model combines population genetics and information geometry. This model describes a generalization of the model of machine learning theory, the model of generative adversarial network (GAN), to the case of populations of generative adversarial networks. The introduced model describes the control of overfitting for generating adversarial networks. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577924020077\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924020077","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 介绍了一个统计流形上突变的 Lotka-Volterra 型群体遗传学模型。该模型中的突变是通过统计流形上的扩散来描述的,其发生器的形式是带有费雪-拉奥度量的拉普拉斯-贝尔特拉米算子,也就是说,该模型结合了种群遗传学和信息几何学。该模型描述了机器学习理论模型--生成式对抗网络(GAN)模型--在生成式对抗网络种群情况下的一般化。引入的模型描述了生成对抗网络的过拟合控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lotka–Volterra model with mutations and generative adversarial networks

A model of population genetics of the Lotka–Volterra type with mutations on a statistical manifold is introduced. Mutations in the model are described by diffusion on a statistical manifold with a generator in the form of a Laplace–Beltrami operator with a Fisher–Rao metric, that is, the model combines population genetics and information geometry. This model describes a generalization of the model of machine learning theory, the model of generative adversarial network (GAN), to the case of populations of generative adversarial networks. The introduced model describes the control of overfitting for generating adversarial networks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信