阻尼振动系统的无限多旋转周期解

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
K. Khachnaoui
{"title":"阻尼振动系统的无限多旋转周期解","authors":"K. Khachnaoui","doi":"10.1134/S0040577924020089","DOIUrl":null,"url":null,"abstract":"<p> We investigate a particular type of damped vibration systems that incorporate impulsive effects. The objective is to establish the existence and multiplicity of <span>\\(Q\\)</span>-rotating periodic solutions. To achieve this, the variational method and the fountain theorem, as presented by Bartsch, are used. The research builds upon recent findings and extends them by introducing notable enhancements. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitely many rotating periodic solutions for damped vibration systems\",\"authors\":\"K. Khachnaoui\",\"doi\":\"10.1134/S0040577924020089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We investigate a particular type of damped vibration systems that incorporate impulsive effects. The objective is to establish the existence and multiplicity of <span>\\\\(Q\\\\)</span>-rotating periodic solutions. To achieve this, the variational method and the fountain theorem, as presented by Bartsch, are used. The research builds upon recent findings and extends them by introducing notable enhancements. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577924020089\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924020089","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们研究了一种包含冲动效应的特殊阻尼振动系统。研究的目的是确定(Q\)旋转周期解的存在性和多重性。为此,我们使用了变分法和 Bartsch 提出的喷泉定理。这项研究建立在最新发现的基础上,并通过引入显著的改进对其进行了扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinitely many rotating periodic solutions for damped vibration systems

We investigate a particular type of damped vibration systems that incorporate impulsive effects. The objective is to establish the existence and multiplicity of \(Q\)-rotating periodic solutions. To achieve this, the variational method and the fountain theorem, as presented by Bartsch, are used. The research builds upon recent findings and extends them by introducing notable enhancements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信