Chen Wujun, Yu Zhiming, Zhang Rui, Zeng Dezhi, Dong Baojun, Wang Xi, Ming Kunji
{"title":"酸性气井腐蚀条件下碳纤维增强复合材料的损伤评估","authors":"Chen Wujun, Yu Zhiming, Zhang Rui, Zeng Dezhi, Dong Baojun, Wang Xi, Ming Kunji","doi":"10.1002/maco.202314253","DOIUrl":null,"url":null,"abstract":"<p>The paper focuses on the excellent chemical inertness characteristics of nonmetallic materials and evaluates the performance of three types of new carbon fiber-reinforced resin-based composites under various simulated corrosion conditions in wellbores. Through comprehensive analysis of macro and micromorphology, moisture absorption performance, strength performance, and molecular structure, the damage characteristics and applicability of carbon fiber composites in oil and gas wellbore conditions were clarified. T700/epoxy and T300/epoxy composites experienced damage dominated by physical effects such as moisture absorption and wet thermal stress, manifested as swelling, deformation, and cracking at the macro level, and pore formation and delamination cracking at the micro level. After continuous corrosion tests, the tensile strength of T700/bismaleimide composite (913 MPa) was higher than that of T700/epoxy composite (814 MPa) and T300/epoxy composite (636 MPa), with reductions of 12.4%, 14.3%, and 19.5% respectively. The research results showed T700 carbon fiber/bismaleimide resin composites had the best mechanical and chemical stability.</p>","PeriodicalId":18225,"journal":{"name":"Materials and Corrosion-werkstoffe Und Korrosion","volume":"75 6","pages":"763-777"},"PeriodicalIF":1.6000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Damage evaluation of carbon fiber reinforced composites under corrosion condition of sour gas well\",\"authors\":\"Chen Wujun, Yu Zhiming, Zhang Rui, Zeng Dezhi, Dong Baojun, Wang Xi, Ming Kunji\",\"doi\":\"10.1002/maco.202314253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper focuses on the excellent chemical inertness characteristics of nonmetallic materials and evaluates the performance of three types of new carbon fiber-reinforced resin-based composites under various simulated corrosion conditions in wellbores. Through comprehensive analysis of macro and micromorphology, moisture absorption performance, strength performance, and molecular structure, the damage characteristics and applicability of carbon fiber composites in oil and gas wellbore conditions were clarified. T700/epoxy and T300/epoxy composites experienced damage dominated by physical effects such as moisture absorption and wet thermal stress, manifested as swelling, deformation, and cracking at the macro level, and pore formation and delamination cracking at the micro level. After continuous corrosion tests, the tensile strength of T700/bismaleimide composite (913 MPa) was higher than that of T700/epoxy composite (814 MPa) and T300/epoxy composite (636 MPa), with reductions of 12.4%, 14.3%, and 19.5% respectively. The research results showed T700 carbon fiber/bismaleimide resin composites had the best mechanical and chemical stability.</p>\",\"PeriodicalId\":18225,\"journal\":{\"name\":\"Materials and Corrosion-werkstoffe Und Korrosion\",\"volume\":\"75 6\",\"pages\":\"763-777\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Corrosion-werkstoffe Und Korrosion\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/maco.202314253\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Corrosion-werkstoffe Und Korrosion","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/maco.202314253","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Damage evaluation of carbon fiber reinforced composites under corrosion condition of sour gas well
The paper focuses on the excellent chemical inertness characteristics of nonmetallic materials and evaluates the performance of three types of new carbon fiber-reinforced resin-based composites under various simulated corrosion conditions in wellbores. Through comprehensive analysis of macro and micromorphology, moisture absorption performance, strength performance, and molecular structure, the damage characteristics and applicability of carbon fiber composites in oil and gas wellbore conditions were clarified. T700/epoxy and T300/epoxy composites experienced damage dominated by physical effects such as moisture absorption and wet thermal stress, manifested as swelling, deformation, and cracking at the macro level, and pore formation and delamination cracking at the micro level. After continuous corrosion tests, the tensile strength of T700/bismaleimide composite (913 MPa) was higher than that of T700/epoxy composite (814 MPa) and T300/epoxy composite (636 MPa), with reductions of 12.4%, 14.3%, and 19.5% respectively. The research results showed T700 carbon fiber/bismaleimide resin composites had the best mechanical and chemical stability.
期刊介绍:
Materials and Corrosion is the leading European journal in its field, providing rapid and comprehensive coverage of the subject and specifically highlighting the increasing importance of corrosion research and prevention.
Several sections exclusive to Materials and Corrosion bring you closer to the current events in the field of corrosion research and add to the impact this journal can make on your work.