作为能量集中集的非退化极小子漫游:变分法

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Guido De Philippis, Alessandro Pigati
{"title":"作为能量集中集的非退化极小子漫游:变分法","authors":"Guido De Philippis,&nbsp;Alessandro Pigati","doi":"10.1002/cpa.22193","DOIUrl":null,"url":null,"abstract":"<p>We prove that every non-degenerate minimal submanifold of codimension two can be obtained as the energy concentration set of a family of critical maps for the (rescaled) Ginzburg–Landau functional. The proof is purely variational, and follows the strategy laid out by Jerrard and Sternberg, extending a recent result for geodesics by Colinet–Jerrard–Sternberg. The same proof applies also to the <span></span><math>\n <semantics>\n <mrow>\n <mi>U</mi>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$U(1)$</annotation>\n </semantics></math>-Yang–Mills–Higgs and to the Allen–Cahn–Hilliard energies. While for the latter energies gluing methods are also effective, in general dimension our proof is by now the only available one in the Ginzburg–Landau setting, where the weaker energy concentration is the main technical difficulty.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-degenerate minimal submanifolds as energy concentration sets: A variational approach\",\"authors\":\"Guido De Philippis,&nbsp;Alessandro Pigati\",\"doi\":\"10.1002/cpa.22193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that every non-degenerate minimal submanifold of codimension two can be obtained as the energy concentration set of a family of critical maps for the (rescaled) Ginzburg–Landau functional. The proof is purely variational, and follows the strategy laid out by Jerrard and Sternberg, extending a recent result for geodesics by Colinet–Jerrard–Sternberg. The same proof applies also to the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>U</mi>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$U(1)$</annotation>\\n </semantics></math>-Yang–Mills–Higgs and to the Allen–Cahn–Hilliard energies. While for the latter energies gluing methods are also effective, in general dimension our proof is by now the only available one in the Ginzburg–Landau setting, where the weaker energy concentration is the main technical difficulty.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22193\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22193","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,每一个标度为 2 的非退化极小子曼形均可作为(重标度)金兹伯格-朗道函数临界映射族的能量集中集而获得。证明纯粹是变分法,遵循杰拉德和斯特恩伯格制定的策略,扩展了科利内特-杰拉德-斯特恩伯格最近关于大地线的一个结果。同样的证明也适用于U(1)$U(1)$-杨-米尔斯-希格斯能量和艾伦-卡恩-希利亚德能量。虽然对于后一种能量,胶合方法也是有效的,但在一般维度上,我们的证明是目前在金兹堡-朗道(Ginzburg-Landau)环境中唯一可用的证明,其中较弱的能量集中是主要的技术难题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-degenerate minimal submanifolds as energy concentration sets: A variational approach

We prove that every non-degenerate minimal submanifold of codimension two can be obtained as the energy concentration set of a family of critical maps for the (rescaled) Ginzburg–Landau functional. The proof is purely variational, and follows the strategy laid out by Jerrard and Sternberg, extending a recent result for geodesics by Colinet–Jerrard–Sternberg. The same proof applies also to the U ( 1 ) $U(1)$ -Yang–Mills–Higgs and to the Allen–Cahn–Hilliard energies. While for the latter energies gluing methods are also effective, in general dimension our proof is by now the only available one in the Ginzburg–Landau setting, where the weaker energy concentration is the main technical difficulty.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信