{"title":"代谢综合征中的肠热休克蛋白:代谢手术后肥胖及其并发症缓解的新介质。","authors":"Giulia Angelini , Sara Russo , Geltrude Mingrone","doi":"10.1016/j.cstres.2024.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>Over the past 40 years, the prevalence of obesity has risen dramatically, reaching epidemic proportions. Metabolic surgery has proven to be highly effective in treating obesity, leading to significant improvements or complete resolution of obesity-related comorbidities.</p><p>Research conducted in both animals and humans suggests that the metabolic benefits achieved through metabolic surgery cannot be solely attributed to weight loss. Indeed, there has been an increasing recognition of intestinal inflammation as a novel factor influencing obesity. The gastrointestinal tract is continuously exposed to dietary components, particularly diets rich in saturated fats, which are known to contribute to obesity. It is now widely accepted that heat shock proteins can be released from various cells including intestinal epithelial cells and act as proinflammatory signals. Several studies have shown that circulating levels of glucose-regulated protein 78 (GRP78) are increased in subjects with obesity and correlate with the severity of the disease. Moreover, mice with a partial knockout of GRP78 are protected from diet-induced obesity.</p><p>In this review, we discuss the role of GRP78 in the development of obesity. Several evidence suggests that GRP78 can influence adipogenesis, lipid droplets stabilization, insulin resistance, and liver steatosis. We also provide an update on GRP78 regulation following metabolic surgery, focusing on the bypass of the small intestine as a key factor for GRP78 secretion. Finally, we discuss the potential role of monoclonal antibodies against GRP78 as a treatment for obesity.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000518/pdfft?md5=1715cd6a94ef99a5f146323a31decaec&pid=1-s2.0-S1355814524000518-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Intestinal heat shock proteins in metabolic syndrome: Novel mediators of obesity and its comorbidities resolution after metabolic surgery\",\"authors\":\"Giulia Angelini , Sara Russo , Geltrude Mingrone\",\"doi\":\"10.1016/j.cstres.2024.02.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Over the past 40 years, the prevalence of obesity has risen dramatically, reaching epidemic proportions. Metabolic surgery has proven to be highly effective in treating obesity, leading to significant improvements or complete resolution of obesity-related comorbidities.</p><p>Research conducted in both animals and humans suggests that the metabolic benefits achieved through metabolic surgery cannot be solely attributed to weight loss. Indeed, there has been an increasing recognition of intestinal inflammation as a novel factor influencing obesity. The gastrointestinal tract is continuously exposed to dietary components, particularly diets rich in saturated fats, which are known to contribute to obesity. It is now widely accepted that heat shock proteins can be released from various cells including intestinal epithelial cells and act as proinflammatory signals. Several studies have shown that circulating levels of glucose-regulated protein 78 (GRP78) are increased in subjects with obesity and correlate with the severity of the disease. Moreover, mice with a partial knockout of GRP78 are protected from diet-induced obesity.</p><p>In this review, we discuss the role of GRP78 in the development of obesity. Several evidence suggests that GRP78 can influence adipogenesis, lipid droplets stabilization, insulin resistance, and liver steatosis. We also provide an update on GRP78 regulation following metabolic surgery, focusing on the bypass of the small intestine as a key factor for GRP78 secretion. Finally, we discuss the potential role of monoclonal antibodies against GRP78 as a treatment for obesity.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1355814524000518/pdfft?md5=1715cd6a94ef99a5f146323a31decaec&pid=1-s2.0-S1355814524000518-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1355814524000518\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1355814524000518","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Intestinal heat shock proteins in metabolic syndrome: Novel mediators of obesity and its comorbidities resolution after metabolic surgery
Over the past 40 years, the prevalence of obesity has risen dramatically, reaching epidemic proportions. Metabolic surgery has proven to be highly effective in treating obesity, leading to significant improvements or complete resolution of obesity-related comorbidities.
Research conducted in both animals and humans suggests that the metabolic benefits achieved through metabolic surgery cannot be solely attributed to weight loss. Indeed, there has been an increasing recognition of intestinal inflammation as a novel factor influencing obesity. The gastrointestinal tract is continuously exposed to dietary components, particularly diets rich in saturated fats, which are known to contribute to obesity. It is now widely accepted that heat shock proteins can be released from various cells including intestinal epithelial cells and act as proinflammatory signals. Several studies have shown that circulating levels of glucose-regulated protein 78 (GRP78) are increased in subjects with obesity and correlate with the severity of the disease. Moreover, mice with a partial knockout of GRP78 are protected from diet-induced obesity.
In this review, we discuss the role of GRP78 in the development of obesity. Several evidence suggests that GRP78 can influence adipogenesis, lipid droplets stabilization, insulin resistance, and liver steatosis. We also provide an update on GRP78 regulation following metabolic surgery, focusing on the bypass of the small intestine as a key factor for GRP78 secretion. Finally, we discuss the potential role of monoclonal antibodies against GRP78 as a treatment for obesity.