{"title":"蛋白质与脂质酰基链的相互作用:磷脂与细菌眼色素接触时段移动性随深度的变化。","authors":"Yuichi Umegawa , Sho Kato , Sangjae Seo , Wataru Shinoda , Satoshi Kawatake , Shigeru Matsuoka , Michio Murata","doi":"10.1016/j.bpc.2024.107204","DOIUrl":null,"url":null,"abstract":"<div><p>Boundary lipids surrounding membrane proteins play an essential role in protein function and structure. These protein–lipid interactions are mainly divided into electrostatic interactions between the polar amino acids of proteins and polar heads of phospholipids, and hydrophobic interactions between protein transmembrane sites and phospholipid acyl chains. Our previous report (Kawatake et al., Biochim. Biophys. Acta 1858 [2016] 2106–2115) covered a method for selectively analyzing boundary lipid interactions and showed differences in membrane protein–peripheral lipid interactions due to differences in their head group. Interactions in the hydrophobic acyl chains of phospholipids are relatively consistent among proteins, but the details of these interactions have not been elucidated. In this study, we reconstituted bacteriorhodopsin as a model protein into phospholipid membranes labeled with <sup>2</sup>H and <sup>13</sup>C for solid-state NMR measurement to investigate the depth-dependent effect of the head group structure on the lipid bilayer. The results showed that the position of the phospholipid near the carbonyl carbon was affected by the head group in terms of selectivity for protein surfaces, whereas in the deep interior of the bilayer near the leaflet interface, there was little difference between the head groups, indicating that the dependence of their interactions on the head group was much reduced.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"308 ","pages":"Article 107204"},"PeriodicalIF":3.3000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protein–lipid acyl chain interactions: Depth-dependent changes of segmental mobility of phospholipid in contact with bacteriorhodopsin\",\"authors\":\"Yuichi Umegawa , Sho Kato , Sangjae Seo , Wataru Shinoda , Satoshi Kawatake , Shigeru Matsuoka , Michio Murata\",\"doi\":\"10.1016/j.bpc.2024.107204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Boundary lipids surrounding membrane proteins play an essential role in protein function and structure. These protein–lipid interactions are mainly divided into electrostatic interactions between the polar amino acids of proteins and polar heads of phospholipids, and hydrophobic interactions between protein transmembrane sites and phospholipid acyl chains. Our previous report (Kawatake et al., Biochim. Biophys. Acta 1858 [2016] 2106–2115) covered a method for selectively analyzing boundary lipid interactions and showed differences in membrane protein–peripheral lipid interactions due to differences in their head group. Interactions in the hydrophobic acyl chains of phospholipids are relatively consistent among proteins, but the details of these interactions have not been elucidated. In this study, we reconstituted bacteriorhodopsin as a model protein into phospholipid membranes labeled with <sup>2</sup>H and <sup>13</sup>C for solid-state NMR measurement to investigate the depth-dependent effect of the head group structure on the lipid bilayer. The results showed that the position of the phospholipid near the carbonyl carbon was affected by the head group in terms of selectivity for protein surfaces, whereas in the deep interior of the bilayer near the leaflet interface, there was little difference between the head groups, indicating that the dependence of their interactions on the head group was much reduced.</p></div>\",\"PeriodicalId\":8979,\"journal\":{\"name\":\"Biophysical chemistry\",\"volume\":\"308 \",\"pages\":\"Article 107204\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301462224000334\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462224000334","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Protein–lipid acyl chain interactions: Depth-dependent changes of segmental mobility of phospholipid in contact with bacteriorhodopsin
Boundary lipids surrounding membrane proteins play an essential role in protein function and structure. These protein–lipid interactions are mainly divided into electrostatic interactions between the polar amino acids of proteins and polar heads of phospholipids, and hydrophobic interactions between protein transmembrane sites and phospholipid acyl chains. Our previous report (Kawatake et al., Biochim. Biophys. Acta 1858 [2016] 2106–2115) covered a method for selectively analyzing boundary lipid interactions and showed differences in membrane protein–peripheral lipid interactions due to differences in their head group. Interactions in the hydrophobic acyl chains of phospholipids are relatively consistent among proteins, but the details of these interactions have not been elucidated. In this study, we reconstituted bacteriorhodopsin as a model protein into phospholipid membranes labeled with 2H and 13C for solid-state NMR measurement to investigate the depth-dependent effect of the head group structure on the lipid bilayer. The results showed that the position of the phospholipid near the carbonyl carbon was affected by the head group in terms of selectivity for protein surfaces, whereas in the deep interior of the bilayer near the leaflet interface, there was little difference between the head groups, indicating that the dependence of their interactions on the head group was much reduced.
期刊介绍:
Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.