应用岩藻糖基化抑制剂生产岩藻糖基化抗体。

IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Ping Xu, Yu Chuan Ou, Michael Smith, Jim Paulson, Michael A. Schmidt, Lakshmi Kandari, Rodney Parsons, Anurag Khetan
{"title":"应用岩藻糖基化抑制剂生产岩藻糖基化抗体。","authors":"Ping Xu,&nbsp;Yu Chuan Ou,&nbsp;Michael Smith,&nbsp;Jim Paulson,&nbsp;Michael A. Schmidt,&nbsp;Lakshmi Kandari,&nbsp;Rodney Parsons,&nbsp;Anurag Khetan","doi":"10.1002/btpr.3438","DOIUrl":null,"url":null,"abstract":"<p>Fucosylation is an important quality attribute for therapeutic antibodies. Afucosylated antibodies exhibit higher therapeutic efficacies than their fucosylated counterparts through antibody-dependent cellular cytotoxicity (ADCC) mechanism. Since higher potency is beneficial in reducing dose or duration of the treatment, afucosylated antibodies have attracted a great deal of interest in biotherapeutics development. In this study, novel small molecules GDP-D-Rhamnose and its derivatives (Ac-GDP-D-Rhamnose and rhamnose sodium phosphate) were synthesized to inhibit the enzyme in the GDP-fucose synthesis pathway. Addition of these compounds into cell culture increased antibody afucosylation levels in a dose-dependent manner and had no significant impact on other protein quality attributes. A novel and effective mechanism to generate afucosylated antibody is demonstrated for biologics discovery, analytical method development, process development, and other applications.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":"40 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of fucosylation inhibitors for production of afucosylated antibody\",\"authors\":\"Ping Xu,&nbsp;Yu Chuan Ou,&nbsp;Michael Smith,&nbsp;Jim Paulson,&nbsp;Michael A. Schmidt,&nbsp;Lakshmi Kandari,&nbsp;Rodney Parsons,&nbsp;Anurag Khetan\",\"doi\":\"10.1002/btpr.3438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fucosylation is an important quality attribute for therapeutic antibodies. Afucosylated antibodies exhibit higher therapeutic efficacies than their fucosylated counterparts through antibody-dependent cellular cytotoxicity (ADCC) mechanism. Since higher potency is beneficial in reducing dose or duration of the treatment, afucosylated antibodies have attracted a great deal of interest in biotherapeutics development. In this study, novel small molecules GDP-D-Rhamnose and its derivatives (Ac-GDP-D-Rhamnose and rhamnose sodium phosphate) were synthesized to inhibit the enzyme in the GDP-fucose synthesis pathway. Addition of these compounds into cell culture increased antibody afucosylation levels in a dose-dependent manner and had no significant impact on other protein quality attributes. A novel and effective mechanism to generate afucosylated antibody is demonstrated for biologics discovery, analytical method development, process development, and other applications.</p>\",\"PeriodicalId\":8856,\"journal\":{\"name\":\"Biotechnology Progress\",\"volume\":\"40 3\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/btpr.3438\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/btpr.3438","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

岩藻糖基化是治疗性抗体的一个重要质量属性。通过抗体依赖性细胞毒性(ADCC)机制,岩藻糖基化抗体比岩藻糖基化抗体具有更高的疗效。由于更高的药效有利于减少治疗剂量或缩短治疗时间,因此afucosylated 抗体在生物治疗药物开发中引起了极大的兴趣。本研究合成了新型小分子 GDP-D-鼠李糖及其衍生物(Ac-GDP-D-鼠李糖和鼠李糖磷酸钠),以抑制 GDP-岩藻糖合成途径中的酶。在细胞培养过程中加入这些化合物,抗体的磷酸化水平会以剂量依赖的方式增加,但对其他蛋白质质量属性没有显著影响。这为生物制剂发现、分析方法开发、工艺开发和其他应用提供了一种新颖而有效的生成afucosyl化抗体的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of fucosylation inhibitors for production of afucosylated antibody

Fucosylation is an important quality attribute for therapeutic antibodies. Afucosylated antibodies exhibit higher therapeutic efficacies than their fucosylated counterparts through antibody-dependent cellular cytotoxicity (ADCC) mechanism. Since higher potency is beneficial in reducing dose or duration of the treatment, afucosylated antibodies have attracted a great deal of interest in biotherapeutics development. In this study, novel small molecules GDP-D-Rhamnose and its derivatives (Ac-GDP-D-Rhamnose and rhamnose sodium phosphate) were synthesized to inhibit the enzyme in the GDP-fucose synthesis pathway. Addition of these compounds into cell culture increased antibody afucosylation levels in a dose-dependent manner and had no significant impact on other protein quality attributes. A novel and effective mechanism to generate afucosylated antibody is demonstrated for biologics discovery, analytical method development, process development, and other applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology Progress
Biotechnology Progress 工程技术-生物工程与应用微生物
CiteScore
6.50
自引率
3.40%
发文量
83
审稿时长
4 months
期刊介绍: Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries. Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信