更光滑的表面可增强纳米棒在纠缠聚合物熔体中的扩散

IF 5.2 1区 化学 Q1 POLYMER SCIENCE
Phillip A. Taylor*, Jiuling Wang, Ting Ge, Thomas C. O’Connor and Gary S. Grest, 
{"title":"更光滑的表面可增强纳米棒在纠缠聚合物熔体中的扩散","authors":"Phillip A. Taylor*,&nbsp;Jiuling Wang,&nbsp;Ting Ge,&nbsp;Thomas C. O’Connor and Gary S. Grest,&nbsp;","doi":"10.1021/acs.macromol.3c01826","DOIUrl":null,"url":null,"abstract":"<p >Coarse-grained molecular dynamics simulations are used to study the diffusion of thin nanorods in entangled polymer melts for varying nanorod length and roughness. While prior studies observed a nanorod parallel diffusion constant scaling inversely with rod length <i>D</i><sub>∥</sub> ∼ <i>l</i><sup>–1</sup>, here, we show that this scaling is not universal and depends sensitively on the nanorod surface roughness. We observe <i>D</i><sub>∥</sub> ∼ <i>l</i><sup>–<i>k</i></sup>, where <i>k</i> &lt; 1 and decreases with decreasing surface roughness. The weaker scaling is driven by the non-Gaussian diffusion of nanorods due to the emergence of an intermittent hopping process that becomes more pronounced with decreasing roughness at the monomer scale. Analysis shows that the mean hop size grows for smoother rods but shows little to no variation with rod length. The mean hopping frequency shows no dependence on either rod length or roughness, suggesting it originates from the polymer melt environment. Our results show that the small-scale features of the nanorod surface strongly influence the large-scale and long-time transport of nanorods in polymer matrices, creating new material design opportunities for precisely engineered nanocomposites.</p>","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"57 5","pages":"2482–2489"},"PeriodicalIF":5.2000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smoother Surfaces Enhance Diffusion of Nanorods in Entangled Polymer Melts\",\"authors\":\"Phillip A. Taylor*,&nbsp;Jiuling Wang,&nbsp;Ting Ge,&nbsp;Thomas C. O’Connor and Gary S. Grest,&nbsp;\",\"doi\":\"10.1021/acs.macromol.3c01826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Coarse-grained molecular dynamics simulations are used to study the diffusion of thin nanorods in entangled polymer melts for varying nanorod length and roughness. While prior studies observed a nanorod parallel diffusion constant scaling inversely with rod length <i>D</i><sub>∥</sub> ∼ <i>l</i><sup>–1</sup>, here, we show that this scaling is not universal and depends sensitively on the nanorod surface roughness. We observe <i>D</i><sub>∥</sub> ∼ <i>l</i><sup>–<i>k</i></sup>, where <i>k</i> &lt; 1 and decreases with decreasing surface roughness. The weaker scaling is driven by the non-Gaussian diffusion of nanorods due to the emergence of an intermittent hopping process that becomes more pronounced with decreasing roughness at the monomer scale. Analysis shows that the mean hop size grows for smoother rods but shows little to no variation with rod length. The mean hopping frequency shows no dependence on either rod length or roughness, suggesting it originates from the polymer melt environment. Our results show that the small-scale features of the nanorod surface strongly influence the large-scale and long-time transport of nanorods in polymer matrices, creating new material design opportunities for precisely engineered nanocomposites.</p>\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"57 5\",\"pages\":\"2482–2489\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.macromol.3c01826\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.macromol.3c01826","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们利用粗粒度分子动力学模拟研究了不同纳米棒长度和粗糙度的薄纳米棒在纠缠聚合物熔体中的扩散情况。之前的研究观察到纳米棒平行扩散常数与棒长 D∥ ∼ l-1 成反比,而在这里,我们发现这种比例关系并不普遍,而是敏感地取决于纳米棒表面的粗糙度。我们观察到 D∥ ∼ l-k,其中 k < 1 并随着表面粗糙度的降低而减小。这种较弱的缩放是由纳米棒的非高斯扩散驱动的,因为出现了间歇性的跳跃过程,这种跳跃过程随着单体尺度粗糙度的降低而变得更加明显。分析表明,对于更光滑的棒材,平均跳跃尺寸会增长,但几乎不随棒材长度变化。平均跳频与棒长或粗糙度都没有关系,这表明跳频源自聚合物熔体环境。我们的研究结果表明,纳米棒表面的小尺度特征对纳米棒在聚合物基质中的大尺度和长时间传输有很大影响,为精确设计纳米复合材料创造了新的材料设计机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Smoother Surfaces Enhance Diffusion of Nanorods in Entangled Polymer Melts

Smoother Surfaces Enhance Diffusion of Nanorods in Entangled Polymer Melts

Smoother Surfaces Enhance Diffusion of Nanorods in Entangled Polymer Melts

Coarse-grained molecular dynamics simulations are used to study the diffusion of thin nanorods in entangled polymer melts for varying nanorod length and roughness. While prior studies observed a nanorod parallel diffusion constant scaling inversely with rod length Dl–1, here, we show that this scaling is not universal and depends sensitively on the nanorod surface roughness. We observe Dlk, where k < 1 and decreases with decreasing surface roughness. The weaker scaling is driven by the non-Gaussian diffusion of nanorods due to the emergence of an intermittent hopping process that becomes more pronounced with decreasing roughness at the monomer scale. Analysis shows that the mean hop size grows for smoother rods but shows little to no variation with rod length. The mean hopping frequency shows no dependence on either rod length or roughness, suggesting it originates from the polymer melt environment. Our results show that the small-scale features of the nanorod surface strongly influence the large-scale and long-time transport of nanorods in polymer matrices, creating new material design opportunities for precisely engineered nanocomposites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信