Nora Kirkizh, Roberto Ulloa, Sebastian Stier, Jürgen Pfeffer
{"title":"从网络跟踪数据预测政治态度:一种机器学习方法","authors":"Nora Kirkizh, Roberto Ulloa, Sebastian Stier, Jürgen Pfeffer","doi":"10.1080/19331681.2024.2316679","DOIUrl":null,"url":null,"abstract":"Anecdotal evidence suggests that the surge of populism and subsequent political polarization might make voters’ political preferences more detectable from digital trace data. This potential scenari...","PeriodicalId":47047,"journal":{"name":"Journal of Information Technology & Politics","volume":"14 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting political attitudes from web tracking data: a machine learning approach\",\"authors\":\"Nora Kirkizh, Roberto Ulloa, Sebastian Stier, Jürgen Pfeffer\",\"doi\":\"10.1080/19331681.2024.2316679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anecdotal evidence suggests that the surge of populism and subsequent political polarization might make voters’ political preferences more detectable from digital trace data. This potential scenari...\",\"PeriodicalId\":47047,\"journal\":{\"name\":\"Journal of Information Technology & Politics\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Technology & Politics\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1080/19331681.2024.2316679\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMMUNICATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Technology & Politics","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1080/19331681.2024.2316679","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMMUNICATION","Score":null,"Total":0}
Predicting political attitudes from web tracking data: a machine learning approach
Anecdotal evidence suggests that the surge of populism and subsequent political polarization might make voters’ political preferences more detectable from digital trace data. This potential scenari...