用于降低喷射安装噪音的带疤喷嘴比较研究

IF 2 3区 工程技术 Q3 MECHANICS
Hasan Kamliya Jawahar, Mahdi Azarpeyvand
{"title":"用于降低喷射安装噪音的带疤喷嘴比较研究","authors":"Hasan Kamliya Jawahar,&nbsp;Mahdi Azarpeyvand","doi":"10.1007/s10494-023-00518-y","DOIUrl":null,"url":null,"abstract":"<div><p>The experimental investigation of the effects of scarfed nozzles on jet-installation noise was conducted using unheated subsonic jets in an anechoic jet noise facility. Four different types of scarfed nozzles with increasing nozzle lip angles were examined to study the installation effects at various plate distances away from the jet. Mach numbers ranging from 0.3 to 0.8 were investigated in the experiments. The use of scarfed nozzles is known to result in the deflection of flow away from the centre axis, inducing asymmetry in the jet shears, leading to azimuthal variation in the spectra, and ultimately, noise reduction. This study aims to explore the possibility of reducing jet-installation noise using scarfed nozzles at subsonic flow conditions. The characteristics of jet hydrodynamic pressure fluctuations were investigated in the axial direction using far-field measurements. The near-field flow features were studied using surface pressure transducers installed on the flat plate for the installed configurations. Detailed spectral, coherence, and correlation analyses were carried out to determine the noise reduction mechanisms associated with scarfed nozzles in the proximity of a flat plate. The results of the study showed that the use of scarfed nozzles significantly reduced the jet-installation noise. The reduction was attributed to the generation of an asymmetric flow field induced by the nozzle geometry. The reduction in noise levels was also observed to increase with increasing nozzle lip angle. The detailed analyses revealed that the noise reduction mechanism was associated with a decrease in the acoustic power generated by the jet. Overall, the results suggest that scarfed nozzles can be an effective means of reducing jet-installation noise in subsonic flow conditions.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"113 3","pages":"747 - 772"},"PeriodicalIF":2.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-023-00518-y.pdf","citationCount":"0","resultStr":"{\"title\":\"A Comparative Study of Scarfed Nozzle for Jet-Installation Noise Reduction\",\"authors\":\"Hasan Kamliya Jawahar,&nbsp;Mahdi Azarpeyvand\",\"doi\":\"10.1007/s10494-023-00518-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The experimental investigation of the effects of scarfed nozzles on jet-installation noise was conducted using unheated subsonic jets in an anechoic jet noise facility. Four different types of scarfed nozzles with increasing nozzle lip angles were examined to study the installation effects at various plate distances away from the jet. Mach numbers ranging from 0.3 to 0.8 were investigated in the experiments. The use of scarfed nozzles is known to result in the deflection of flow away from the centre axis, inducing asymmetry in the jet shears, leading to azimuthal variation in the spectra, and ultimately, noise reduction. This study aims to explore the possibility of reducing jet-installation noise using scarfed nozzles at subsonic flow conditions. The characteristics of jet hydrodynamic pressure fluctuations were investigated in the axial direction using far-field measurements. The near-field flow features were studied using surface pressure transducers installed on the flat plate for the installed configurations. Detailed spectral, coherence, and correlation analyses were carried out to determine the noise reduction mechanisms associated with scarfed nozzles in the proximity of a flat plate. The results of the study showed that the use of scarfed nozzles significantly reduced the jet-installation noise. The reduction was attributed to the generation of an asymmetric flow field induced by the nozzle geometry. The reduction in noise levels was also observed to increase with increasing nozzle lip angle. The detailed analyses revealed that the noise reduction mechanism was associated with a decrease in the acoustic power generated by the jet. Overall, the results suggest that scarfed nozzles can be an effective means of reducing jet-installation noise in subsonic flow conditions.</p></div>\",\"PeriodicalId\":559,\"journal\":{\"name\":\"Flow, Turbulence and Combustion\",\"volume\":\"113 3\",\"pages\":\"747 - 772\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10494-023-00518-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow, Turbulence and Combustion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10494-023-00518-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-023-00518-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

在消声喷气噪声设施中,使用未加热的亚音速喷气进行了关于带疤痕喷嘴对喷气安装噪声影响的实验研究。研究了四种不同类型、喷嘴唇角不断增大的褶皱喷嘴,以研究不同板距射流的安装效果。实验研究的马赫数从 0.3 到 0.8 不等。众所周知,使用褶皱喷嘴会导致气流偏离中心轴,从而引起射流剪切的不对称,导致频谱的方位角变化,最终降低噪音。本研究旨在探索在亚音速流动条件下使用带疤痕喷嘴降低射流安装噪音的可能性。通过远场测量,研究了射流在轴向的流体动力压力波动特征。使用安装在平板上的表面压力传感器对安装配置的近场流动特征进行了研究。进行了详细的频谱、相干性和相关性分析,以确定与平板附近的带疤喷嘴相关的降噪机制。研究结果表明,使用褶皱喷嘴可显著降低喷射安装噪音。噪音降低的原因是喷嘴的几何形状产生了非对称流场。据观察,噪音水平的降低随喷嘴唇角的增大而增加。详细分析显示,噪音降低机制与喷射产生的声功率降低有关。总之,研究结果表明,在亚音速流动条件下,巾状喷嘴可以有效降低喷射安装噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Comparative Study of Scarfed Nozzle for Jet-Installation Noise Reduction

A Comparative Study of Scarfed Nozzle for Jet-Installation Noise Reduction

The experimental investigation of the effects of scarfed nozzles on jet-installation noise was conducted using unheated subsonic jets in an anechoic jet noise facility. Four different types of scarfed nozzles with increasing nozzle lip angles were examined to study the installation effects at various plate distances away from the jet. Mach numbers ranging from 0.3 to 0.8 were investigated in the experiments. The use of scarfed nozzles is known to result in the deflection of flow away from the centre axis, inducing asymmetry in the jet shears, leading to azimuthal variation in the spectra, and ultimately, noise reduction. This study aims to explore the possibility of reducing jet-installation noise using scarfed nozzles at subsonic flow conditions. The characteristics of jet hydrodynamic pressure fluctuations were investigated in the axial direction using far-field measurements. The near-field flow features were studied using surface pressure transducers installed on the flat plate for the installed configurations. Detailed spectral, coherence, and correlation analyses were carried out to determine the noise reduction mechanisms associated with scarfed nozzles in the proximity of a flat plate. The results of the study showed that the use of scarfed nozzles significantly reduced the jet-installation noise. The reduction was attributed to the generation of an asymmetric flow field induced by the nozzle geometry. The reduction in noise levels was also observed to increase with increasing nozzle lip angle. The detailed analyses revealed that the noise reduction mechanism was associated with a decrease in the acoustic power generated by the jet. Overall, the results suggest that scarfed nozzles can be an effective means of reducing jet-installation noise in subsonic flow conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Flow, Turbulence and Combustion
Flow, Turbulence and Combustion 工程技术-力学
CiteScore
5.70
自引率
8.30%
发文量
72
审稿时长
2 months
期刊介绍: Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles. Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信