谐波指数与一些着色参数之间的关系

IF 1 3区 数学 Q1 MATHEMATICS
Dazhi Lin
{"title":"谐波指数与一些着色参数之间的关系","authors":"Dazhi Lin","doi":"10.1007/s40840-024-01662-y","DOIUrl":null,"url":null,"abstract":"<p>Let <i>H</i>(<i>G</i>) be the harmonic index of a graph <i>G</i>, which is defined as: </p><span>$$\\begin{aligned} H(G) = \\sum _{uv \\in E(G)}\\frac{2}{d_{G}(u) + d_{G}(v)}. \\end{aligned}$$</span><p>In this note, we define a new graph parameter <span>\\(\\xi (G)\\)</span> satisfying some properties and prove that <span>\\(\\xi (G) \\le 2H(G)\\)</span>, with equality if and only if <i>G</i> is a non-trivial complete graph, possibly plus some additional isolated vertices. In particular, <span>\\(\\xi (G)\\)</span> can be the chromatic number <span>\\(\\chi (G)\\)</span>, the choice number <span>\\(\\chi _{\\ell }(G)\\)</span>, the DP-chromatic number <span>\\(\\chi _{\\text {DP}}(G)\\)</span>, the DP-paint number <span>\\(\\chi _{\\text {DPP}}(G)\\)</span>, the weak coloring number <span>\\(\\text {wcol}(G)\\)</span>, the coloring number <span>\\(\\text {col}(G)\\)</span>. Our result generalizes some corresponding known results.</p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"21 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Relation Between the Harmonic Index and Some Coloring Parameters\",\"authors\":\"Dazhi Lin\",\"doi\":\"10.1007/s40840-024-01662-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>H</i>(<i>G</i>) be the harmonic index of a graph <i>G</i>, which is defined as: </p><span>$$\\\\begin{aligned} H(G) = \\\\sum _{uv \\\\in E(G)}\\\\frac{2}{d_{G}(u) + d_{G}(v)}. \\\\end{aligned}$$</span><p>In this note, we define a new graph parameter <span>\\\\(\\\\xi (G)\\\\)</span> satisfying some properties and prove that <span>\\\\(\\\\xi (G) \\\\le 2H(G)\\\\)</span>, with equality if and only if <i>G</i> is a non-trivial complete graph, possibly plus some additional isolated vertices. In particular, <span>\\\\(\\\\xi (G)\\\\)</span> can be the chromatic number <span>\\\\(\\\\chi (G)\\\\)</span>, the choice number <span>\\\\(\\\\chi _{\\\\ell }(G)\\\\)</span>, the DP-chromatic number <span>\\\\(\\\\chi _{\\\\text {DP}}(G)\\\\)</span>, the DP-paint number <span>\\\\(\\\\chi _{\\\\text {DPP}}(G)\\\\)</span>, the weak coloring number <span>\\\\(\\\\text {wcol}(G)\\\\)</span>, the coloring number <span>\\\\(\\\\text {col}(G)\\\\)</span>. Our result generalizes some corresponding known results.</p>\",\"PeriodicalId\":50718,\"journal\":{\"name\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40840-024-01662-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01662-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设 H(G) 是图 G 的谐波指数,其定义为$$\begin{aligned} H(G) = \sum _{uv\in E(G)}\frac{2}{d_{G}(u) + d_{G}(v)}.\end{aligned}$$在本注释中,我们定义了一个新的图参数 (\xi (G)\) 满足一些属性,并证明了 (\xi (G) \le 2H(G)\),当且仅当 G 是一个非三维完整图(可能加上一些额外的孤立顶点)时才相等。具体来说,\(\xi (G)\) 可以是色度数 \(\chi (G)\), 选择数 \(\chi _{\ell }(G)\), DP-色度数 \(\chi _\{text {DP}}(G)\)、the DP-paint number \(\chi _{\text {DPP}}(G)\), the weak coloring number \(\text {wcol}(G)\), the coloring number \(\text {col}(G)\).我们的结果概括了一些相应的已知结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Relation Between the Harmonic Index and Some Coloring Parameters

Let H(G) be the harmonic index of a graph G, which is defined as:

$$\begin{aligned} H(G) = \sum _{uv \in E(G)}\frac{2}{d_{G}(u) + d_{G}(v)}. \end{aligned}$$

In this note, we define a new graph parameter \(\xi (G)\) satisfying some properties and prove that \(\xi (G) \le 2H(G)\), with equality if and only if G is a non-trivial complete graph, possibly plus some additional isolated vertices. In particular, \(\xi (G)\) can be the chromatic number \(\chi (G)\), the choice number \(\chi _{\ell }(G)\), the DP-chromatic number \(\chi _{\text {DP}}(G)\), the DP-paint number \(\chi _{\text {DPP}}(G)\), the weak coloring number \(\text {wcol}(G)\), the coloring number \(\text {col}(G)\). Our result generalizes some corresponding known results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
176
审稿时长
3 months
期刊介绍: This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信