论双曲微分差分方程的一个考奇问题

IF 0.8 4区 数学 Q2 MATHEMATICS
N. V. Zaitseva
{"title":"论双曲微分差分方程的一个考奇问题","authors":"N. V. Zaitseva","doi":"10.1134/s0012266123120182","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We provide a formulation of the Cauchy problem in a strip for a two-dimensional\nhyperbolic equation containing a superposition of a differential operator and a shift operator with\nrespect to the spatial variable varying along the entire real axis. The solution of the problem using\nintegral Fourier transforms is constructed in explicit form.\n</p>","PeriodicalId":50580,"journal":{"name":"Differential Equations","volume":"33 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On One Cauchy Problem for a Hyperbolic Differential-Difference Equation\",\"authors\":\"N. V. Zaitseva\",\"doi\":\"10.1134/s0012266123120182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> We provide a formulation of the Cauchy problem in a strip for a two-dimensional\\nhyperbolic equation containing a superposition of a differential operator and a shift operator with\\nrespect to the spatial variable varying along the entire real axis. The solution of the problem using\\nintegral Fourier transforms is constructed in explicit form.\\n</p>\",\"PeriodicalId\":50580,\"journal\":{\"name\":\"Differential Equations\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0012266123120182\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266123120182","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们提供了一个二维双曲方程的带状 Cauchy 问题的公式,该方程包含一个微分算子和一个相对于沿整个实轴变化的空间变量的移位算子的叠加。利用傅立叶积分变换以显式形式构造了问题的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On One Cauchy Problem for a Hyperbolic Differential-Difference Equation

Abstract

We provide a formulation of the Cauchy problem in a strip for a two-dimensional hyperbolic equation containing a superposition of a differential operator and a shift operator with respect to the spatial variable varying along the entire real axis. The solution of the problem using integral Fourier transforms is constructed in explicit form.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Differential Equations
Differential Equations 数学-数学
CiteScore
1.30
自引率
33.30%
发文量
72
审稿时长
3-8 weeks
期刊介绍: Differential Equations is a journal devoted to differential equations and the associated integral equations. The journal publishes original articles by authors from all countries and accepts manuscripts in English and Russian. The topics of the journal cover ordinary differential equations, partial differential equations, spectral theory of differential operators, integral and integral–differential equations, difference equations and their applications in control theory, mathematical modeling, shell theory, informatics, and oscillation theory. The journal is published in collaboration with the Department of Mathematics and the Division of Nanotechnologies and Information Technologies of the Russian Academy of Sciences and the Institute of Mathematics of the National Academy of Sciences of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信