D. V. Lukyanenko, R. L. Argun, A. A. Borzunov, A. V. Gorbachev, V. D. Shinkarev, M. A. Shishlenin, A. G. Yagola
{"title":"论各类数据的反应-扩散-对流型非线性方程系数逆问题数值解法的特点","authors":"D. V. Lukyanenko, R. L. Argun, A. A. Borzunov, A. V. Gorbachev, V. D. Shinkarev, M. A. Shishlenin, A. G. Yagola","doi":"10.1134/s0012266123120133","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> The paper discusses the features of constructing numerical schemes for solving coefficient inverse problems for nonlinear partial differential equations of the reaction–diffusion–advection type with data of various types. As input data for the inverse problem, we consider (1) data at the final moment of time, (2) data at the spatial boundary of a domain, (3) data at the position of the reaction front. To solve the inverse problem in all formulations, the gradient method of minimizing the target functional is used. In this case, when constructing numerical minimization schemes, both an approach based on discretization of the analytical expression for the gradient of the functional and an approach based on differentiating the discrete approximation of the functional to be minimized are considered. Features of the practical implementation of these\napproaches are demonstrated by the example of solving the inverse problem of reconstructing the linear gain coefficient in a nonlinear Burgers-type equation.\n</p>","PeriodicalId":50580,"journal":{"name":"Differential Equations","volume":"3 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Features of Numerical Solution of Coefficient Inverse Problems for Nonlinear Equations of the Reaction–Diffusion–Advection Type with Data of Various Types\",\"authors\":\"D. V. Lukyanenko, R. L. Argun, A. A. Borzunov, A. V. Gorbachev, V. D. Shinkarev, M. A. Shishlenin, A. G. Yagola\",\"doi\":\"10.1134/s0012266123120133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> The paper discusses the features of constructing numerical schemes for solving coefficient inverse problems for nonlinear partial differential equations of the reaction–diffusion–advection type with data of various types. As input data for the inverse problem, we consider (1) data at the final moment of time, (2) data at the spatial boundary of a domain, (3) data at the position of the reaction front. To solve the inverse problem in all formulations, the gradient method of minimizing the target functional is used. In this case, when constructing numerical minimization schemes, both an approach based on discretization of the analytical expression for the gradient of the functional and an approach based on differentiating the discrete approximation of the functional to be minimized are considered. Features of the practical implementation of these\\napproaches are demonstrated by the example of solving the inverse problem of reconstructing the linear gain coefficient in a nonlinear Burgers-type equation.\\n</p>\",\"PeriodicalId\":50580,\"journal\":{\"name\":\"Differential Equations\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0012266123120133\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266123120133","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the Features of Numerical Solution of Coefficient Inverse Problems for Nonlinear Equations of the Reaction–Diffusion–Advection Type with Data of Various Types
Abstract
The paper discusses the features of constructing numerical schemes for solving coefficient inverse problems for nonlinear partial differential equations of the reaction–diffusion–advection type with data of various types. As input data for the inverse problem, we consider (1) data at the final moment of time, (2) data at the spatial boundary of a domain, (3) data at the position of the reaction front. To solve the inverse problem in all formulations, the gradient method of minimizing the target functional is used. In this case, when constructing numerical minimization schemes, both an approach based on discretization of the analytical expression for the gradient of the functional and an approach based on differentiating the discrete approximation of the functional to be minimized are considered. Features of the practical implementation of these
approaches are demonstrated by the example of solving the inverse problem of reconstructing the linear gain coefficient in a nonlinear Burgers-type equation.
期刊介绍:
Differential Equations is a journal devoted to differential equations and the associated integral equations. The journal publishes original articles by authors from all countries and accepts manuscripts in English and Russian. The topics of the journal cover ordinary differential equations, partial differential equations, spectral theory of differential operators, integral and integral–differential equations, difference equations and their applications in control theory, mathematical modeling, shell theory, informatics, and oscillation theory. The journal is published in collaboration with the Department of Mathematics and the Division of Nanotechnologies and Information Technologies of the Russian Academy of Sciences and the Institute of Mathematics of the National Academy of Sciences of Belarus.