无[数学]图形上的警察与强盗

IF 0.9 3区 数学 Q2 MATHEMATICS
Maria Chudnovsky, Sergey Norin, Paul D. Seymour, Jérémie Turcotte
{"title":"无[数学]图形上的警察与强盗","authors":"Maria Chudnovsky, Sergey Norin, Paul D. Seymour, Jérémie Turcotte","doi":"10.1137/23m1549912","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Discrete Mathematics, Volume 38, Issue 1, Page 845-856, March 2024. <br/> Abstract. We prove that every connected [math]-free graph has cop number at most two, solving a conjecture of Sivaraman. In order to do so, we first prove that every connected [math]-free graph [math] with independence number at least three contains a three-vertex induced path with vertices [math] in order, such that every neighbor of [math] is also adjacent to one of [math].","PeriodicalId":49530,"journal":{"name":"SIAM Journal on Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cops and Robbers on [math]-Free Graphs\",\"authors\":\"Maria Chudnovsky, Sergey Norin, Paul D. Seymour, Jérémie Turcotte\",\"doi\":\"10.1137/23m1549912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Discrete Mathematics, Volume 38, Issue 1, Page 845-856, March 2024. <br/> Abstract. We prove that every connected [math]-free graph has cop number at most two, solving a conjecture of Sivaraman. In order to do so, we first prove that every connected [math]-free graph [math] with independence number at least three contains a three-vertex induced path with vertices [math] in order, such that every neighbor of [math] is also adjacent to one of [math].\",\"PeriodicalId\":49530,\"journal\":{\"name\":\"SIAM Journal on Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1549912\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1549912","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 离散数学杂志》,第 38 卷,第 1 期,第 845-856 页,2024 年 3 月。 摘要。我们证明了每一个连通的无[数学]图的 cop 数最多只有两个,从而解决了 Sivaraman 的一个猜想。为此,我们首先证明,每一个独立数至少为三的连通无[math]图[math]都包含一条顶点[math]按顺序排列的三顶点诱导路径,使得[math]的每一个邻接点都与[math]的一个邻接点相邻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cops and Robbers on [math]-Free Graphs
SIAM Journal on Discrete Mathematics, Volume 38, Issue 1, Page 845-856, March 2024.
Abstract. We prove that every connected [math]-free graph has cop number at most two, solving a conjecture of Sivaraman. In order to do so, we first prove that every connected [math]-free graph [math] with independence number at least three contains a three-vertex induced path with vertices [math] in order, such that every neighbor of [math] is also adjacent to one of [math].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Discrete Mathematics (SIDMA) publishes research papers of exceptional quality in pure and applied discrete mathematics, broadly interpreted. The journal''s focus is primarily theoretical rather than empirical, but the editors welcome papers that evolve from or have potential application to real-world problems. Submissions must be clearly written and make a significant contribution. Topics include but are not limited to: properties of and extremal problems for discrete structures combinatorial optimization, including approximation algorithms algebraic and enumerative combinatorics coding and information theory additive, analytic combinatorics and number theory combinatorial matrix theory and spectral graph theory design and analysis of algorithms for discrete structures discrete problems in computational complexity discrete and computational geometry discrete methods in computational biology, and bioinformatics probabilistic methods and randomized algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信