论向量束上的线性微分算子的可解性

Pub Date : 2024-02-26 DOI:10.1134/s0012266123120078
M. S. Smirnov
{"title":"论向量束上的线性微分算子的可解性","authors":"M. S. Smirnov","doi":"10.1134/s0012266123120078","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> A necessary and sufficient condition is established for the closedness of the range or\nsurjectivity of a differential operator acting on smooth sections of vector bundles. For connected\nnoncompact manifolds it is shown that these conditions are derived from the regularity conditions\nand the unique continuation property of solutions. An application of these results to elliptic\noperators (more precisely, to operators with a surjective principal symbol) with analytic\ncoefficients, to second-order elliptic operators on line bundles with a real leading part, and to the\nHodge–Laplace–de Rham operator is given. It is shown that the top de Rham (respectively,\nDolbeault) cohomology group on a connected noncompact smooth (respectively, complex-analytic)\nmanifold vanishes. For elliptic operators, we prove that solvability in smooth sections implies\nsolvability in generalized sections.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Solvability of Linear Differential Operators on Vector Bundles over a Manifold\",\"authors\":\"M. S. Smirnov\",\"doi\":\"10.1134/s0012266123120078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> A necessary and sufficient condition is established for the closedness of the range or\\nsurjectivity of a differential operator acting on smooth sections of vector bundles. For connected\\nnoncompact manifolds it is shown that these conditions are derived from the regularity conditions\\nand the unique continuation property of solutions. An application of these results to elliptic\\noperators (more precisely, to operators with a surjective principal symbol) with analytic\\ncoefficients, to second-order elliptic operators on line bundles with a real leading part, and to the\\nHodge–Laplace–de Rham operator is given. It is shown that the top de Rham (respectively,\\nDolbeault) cohomology group on a connected noncompact smooth (respectively, complex-analytic)\\nmanifold vanishes. For elliptic operators, we prove that solvability in smooth sections implies\\nsolvability in generalized sections.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0012266123120078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266123120078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 为作用于向量束光滑截面的微分算子的范围封闭性或可射性建立了必要和充分条件。对于连通的非紧凑流形,这些条件可以从正则性条件和解的唯一延续性质推导出来。本文给出了这些结果在以下方面的应用:具有解析系数的椭圆算子(更确切地说,具有投射主符号的算子)、线束上具有实前导部分的二阶椭圆算子以及霍奇-拉普拉斯-德拉姆算子。研究表明,连通的非紧密光滑(分别为复解析)流形上的顶德拉姆(分别为多尔贝)同调群消失。对于椭圆算子,我们证明了光滑截面的可解性意味着广义截面的可解性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Solvability of Linear Differential Operators on Vector Bundles over a Manifold

Abstract

A necessary and sufficient condition is established for the closedness of the range or surjectivity of a differential operator acting on smooth sections of vector bundles. For connected noncompact manifolds it is shown that these conditions are derived from the regularity conditions and the unique continuation property of solutions. An application of these results to elliptic operators (more precisely, to operators with a surjective principal symbol) with analytic coefficients, to second-order elliptic operators on line bundles with a real leading part, and to the Hodge–Laplace–de Rham operator is given. It is shown that the top de Rham (respectively, Dolbeault) cohomology group on a connected noncompact smooth (respectively, complex-analytic) manifold vanishes. For elliptic operators, we prove that solvability in smooth sections implies solvability in generalized sections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信