局部有限群上有限类型的移动

Pub Date : 2024-02-26 DOI:10.1017/etds.2024.14
JADE RAYMOND
{"title":"局部有限群上有限类型的移动","authors":"JADE RAYMOND","doi":"10.1017/etds.2024.14","DOIUrl":null,"url":null,"abstract":"In this work we prove that every shift of finite type (SFT), sofic shift, and strongly irreducible shift on locally finite groups has strong dynamical properties. These properties include that every sofic shift is an SFT, every SFT is strongly irreducible, every strongly irreducible shift is an SFT, every SFT is entropy minimal, and every SFT has a unique measure of maximal entropy, among others. In addition, we show that if every SFT on a group is strongly irreducible, or if every sofic shift is an SFT, then the group must be locally finite, and this extends to all of the properties we explore. These results are collected in two main theorems which characterize the local finiteness of groups by purely dynamical properties. In pursuit of these results, we present a formal construction of <jats:italic>free extension</jats:italic> shifts on a group <jats:italic>G</jats:italic>, which takes a shift on a subgroup <jats:italic>H</jats:italic> of <jats:italic>G</jats:italic>, and naturally extends it to a shift on all of <jats:italic>G</jats:italic>.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shifts of finite type on locally finite groups\",\"authors\":\"JADE RAYMOND\",\"doi\":\"10.1017/etds.2024.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we prove that every shift of finite type (SFT), sofic shift, and strongly irreducible shift on locally finite groups has strong dynamical properties. These properties include that every sofic shift is an SFT, every SFT is strongly irreducible, every strongly irreducible shift is an SFT, every SFT is entropy minimal, and every SFT has a unique measure of maximal entropy, among others. In addition, we show that if every SFT on a group is strongly irreducible, or if every sofic shift is an SFT, then the group must be locally finite, and this extends to all of the properties we explore. These results are collected in two main theorems which characterize the local finiteness of groups by purely dynamical properties. In pursuit of these results, we present a formal construction of <jats:italic>free extension</jats:italic> shifts on a group <jats:italic>G</jats:italic>, which takes a shift on a subgroup <jats:italic>H</jats:italic> of <jats:italic>G</jats:italic>, and naturally extends it to a shift on all of <jats:italic>G</jats:italic>.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2024.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们证明了局部有限群上的每一个有限型移位(SFT)、sofic 移位和强不可还原移位都具有强动力学性质。这些性质包括:每个sofic shift 都是一个SFT,每个SFT 都是强不可还原的,每个强不可还原的 shift 都是一个SFT,每个SFT 都是熵最小的,每个SFT 都有一个唯一的最大熵量,等等。此外,我们还证明,如果一个群上的每一个 SFT 都是强不可还原的,或者每一个sofic shift 都是一个 SFT,那么这个群一定是局部有限的,这也扩展到了我们探索的所有性质。这些结果集合在两个主要定理中,它们通过纯粹的动力学性质描述了群的局部有限性。为了追寻这些结果,我们提出了群 G 上自由扩展位移的形式构造,它将 G 的一个子群 H 上的位移,自然地扩展为 G 全部上的位移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Shifts of finite type on locally finite groups
In this work we prove that every shift of finite type (SFT), sofic shift, and strongly irreducible shift on locally finite groups has strong dynamical properties. These properties include that every sofic shift is an SFT, every SFT is strongly irreducible, every strongly irreducible shift is an SFT, every SFT is entropy minimal, and every SFT has a unique measure of maximal entropy, among others. In addition, we show that if every SFT on a group is strongly irreducible, or if every sofic shift is an SFT, then the group must be locally finite, and this extends to all of the properties we explore. These results are collected in two main theorems which characterize the local finiteness of groups by purely dynamical properties. In pursuit of these results, we present a formal construction of free extension shifts on a group G, which takes a shift on a subgroup H of G, and naturally extends it to a shift on all of G.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信