解码马铃薯的力量:利用机器学习和最新技术预测全球产量

IF 2.3 3区 农林科学 Q1 AGRONOMY
Shikha Yadav, Abdullah Mohammad Ghazi Al khatib, Bayan Mohamad Alshaib, Sushmita Ranjan, Binita Kumari, Naief Alabed Alkader, Pradeep Mishra, Promil Kapoor
{"title":"解码马铃薯的力量:利用机器学习和最新技术预测全球产量","authors":"Shikha Yadav, Abdullah Mohammad Ghazi Al khatib, Bayan Mohamad Alshaib, Sushmita Ranjan, Binita Kumari, Naief Alabed Alkader, Pradeep Mishra, Promil Kapoor","doi":"10.1007/s11540-024-09705-4","DOIUrl":null,"url":null,"abstract":"<p>As the second largest potato producer globally, reliable forecasts of output for India and major growing states are crucial. This study developed autoregressive integrated moving average (ARIMA) models alongside state space and gradient boosting machine learning techniques for annual potato production spanning 1967–2020. Model adequacy was evaluated using information criteria, errors metrics and out-of-sample validation. The chosen models provide the following forecasts: India is predicted to produce around 46,712 thousand metric tons, Uttar Pradesh 13,900 thousand metric tons, West Bengal 11,544 thousand metric tons, Bihar 7710 thousand metric tons, Madhya Pradesh 3478 thousand metric tons, Gujarat 3621 thousand metric tons and Punjab 2870 thousand metric tons over the period 2021–2027. While no consistent superior approach emerged, tailoring models to capture data complexity and patterns for each state proved essential for generalization. Quantitatively assessing linearity, stationarity and outliers during model specification is key for stakeholders and policymakers needing precise predictions.</p>","PeriodicalId":20378,"journal":{"name":"Potato Research","volume":"332 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding Potato Power: A Global Forecast of Production with Machine Learning and State-of-the-Art Techniques\",\"authors\":\"Shikha Yadav, Abdullah Mohammad Ghazi Al khatib, Bayan Mohamad Alshaib, Sushmita Ranjan, Binita Kumari, Naief Alabed Alkader, Pradeep Mishra, Promil Kapoor\",\"doi\":\"10.1007/s11540-024-09705-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As the second largest potato producer globally, reliable forecasts of output for India and major growing states are crucial. This study developed autoregressive integrated moving average (ARIMA) models alongside state space and gradient boosting machine learning techniques for annual potato production spanning 1967–2020. Model adequacy was evaluated using information criteria, errors metrics and out-of-sample validation. The chosen models provide the following forecasts: India is predicted to produce around 46,712 thousand metric tons, Uttar Pradesh 13,900 thousand metric tons, West Bengal 11,544 thousand metric tons, Bihar 7710 thousand metric tons, Madhya Pradesh 3478 thousand metric tons, Gujarat 3621 thousand metric tons and Punjab 2870 thousand metric tons over the period 2021–2027. While no consistent superior approach emerged, tailoring models to capture data complexity and patterns for each state proved essential for generalization. Quantitatively assessing linearity, stationarity and outliers during model specification is key for stakeholders and policymakers needing precise predictions.</p>\",\"PeriodicalId\":20378,\"journal\":{\"name\":\"Potato Research\",\"volume\":\"332 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Potato Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11540-024-09705-4\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potato Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11540-024-09705-4","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

作为全球第二大马铃薯生产国,对印度和主要种植邦的产量进行可靠预测至关重要。本研究开发了自回归综合移动平均(ARIMA)模型以及状态空间和梯度提升机器学习技术,用于预测 1967-2020 年的马铃薯年产量。利用信息标准、误差度量和样本外验证对模型的充分性进行了评估。所选模型提供了以下预测:据预测,2021-2027 年期间,印度马铃薯产量约为 4671.2 万公吨,北方邦为 1390 万公吨,西孟加拉邦为 1154.4 万公吨,比哈尔邦为 771 万公吨,中央邦为 347.8 万公吨,古吉拉特邦为 362.1 万公吨,旁遮普邦为 287 万公吨。虽然没有出现一致的优越方法,但事实证明,定制模型以捕捉每个邦的数据复杂性和模式对于推广至关重要。对于需要精确预测的利益相关者和决策者来说,在模型规范过程中对线性、静止性和异常值进行定量评估至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Decoding Potato Power: A Global Forecast of Production with Machine Learning and State-of-the-Art Techniques

Decoding Potato Power: A Global Forecast of Production with Machine Learning and State-of-the-Art Techniques

As the second largest potato producer globally, reliable forecasts of output for India and major growing states are crucial. This study developed autoregressive integrated moving average (ARIMA) models alongside state space and gradient boosting machine learning techniques for annual potato production spanning 1967–2020. Model adequacy was evaluated using information criteria, errors metrics and out-of-sample validation. The chosen models provide the following forecasts: India is predicted to produce around 46,712 thousand metric tons, Uttar Pradesh 13,900 thousand metric tons, West Bengal 11,544 thousand metric tons, Bihar 7710 thousand metric tons, Madhya Pradesh 3478 thousand metric tons, Gujarat 3621 thousand metric tons and Punjab 2870 thousand metric tons over the period 2021–2027. While no consistent superior approach emerged, tailoring models to capture data complexity and patterns for each state proved essential for generalization. Quantitatively assessing linearity, stationarity and outliers during model specification is key for stakeholders and policymakers needing precise predictions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Potato Research
Potato Research AGRONOMY-
CiteScore
5.50
自引率
6.90%
发文量
66
审稿时长
>12 weeks
期刊介绍: Potato Research, the journal of the European Association for Potato Research (EAPR), promotes the exchange of information on all aspects of this fast-evolving global industry. It offers the latest developments in innovative research to scientists active in potato research. The journal includes authoritative coverage of new scientific developments, publishing original research and review papers on such topics as: Molecular sciences; Breeding; Physiology; Pathology; Nematology; Virology; Agronomy; Engineering and Utilization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信