{"title":"恒星加速盘中大规模涡旋结构的形成与演化","authors":"Z. D. Livenets, A. Yu. Lugovsky","doi":"10.1134/S1063772923120053","DOIUrl":null,"url":null,"abstract":"<p>Explaining the causes of angular momentum transfer in accretion stellar disks is an important astrophysical problem, since it is the process that determines the rate of accretion of matter onto the central gravitating body. Previously, within the framework of a two-dimensional approach, it was shown that the introduction of small perturbations into the flow of accretion disk leads to the appearance of shear instability. This process is accompanied by the development of large-scale vortex structures. Their movement and evolution lead to a redistribution of angular momentum in the accretion disk. The action of the described mechanism was previously studied numerically only within a two-dimensional approximation, so the goal of the current work is to carry out full-scale three-dimensional modeling. The processes under study are described within the framework of the system of equations of ideal gas dynamics. The article briefly describes the method for their numerical integration, which is based on a conservative finite-difference scheme and the solution of the Riemann problem. The initial data is a stationary toroidal gas state surrounded by a matter with low density and pressure. At the next step, small perturbations of one of the gas-dynamic variables are introduced. The modeling and analysis of the results of numerical calculations show the emergence of vortex structures in the shear flow of a three-dimensional accretion disk. Their movement is accompanied by a redistribution of matter and angular momentum in the volume of the disk, leading to accretion of matter onto the central body.</p>","PeriodicalId":55440,"journal":{"name":"Astronomy Reports","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Formation and the Evolution of Large-Scale Vortex Structures in Stellar Accetion Disks\",\"authors\":\"Z. D. Livenets, A. Yu. Lugovsky\",\"doi\":\"10.1134/S1063772923120053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Explaining the causes of angular momentum transfer in accretion stellar disks is an important astrophysical problem, since it is the process that determines the rate of accretion of matter onto the central gravitating body. Previously, within the framework of a two-dimensional approach, it was shown that the introduction of small perturbations into the flow of accretion disk leads to the appearance of shear instability. This process is accompanied by the development of large-scale vortex structures. Their movement and evolution lead to a redistribution of angular momentum in the accretion disk. The action of the described mechanism was previously studied numerically only within a two-dimensional approximation, so the goal of the current work is to carry out full-scale three-dimensional modeling. The processes under study are described within the framework of the system of equations of ideal gas dynamics. The article briefly describes the method for their numerical integration, which is based on a conservative finite-difference scheme and the solution of the Riemann problem. The initial data is a stationary toroidal gas state surrounded by a matter with low density and pressure. At the next step, small perturbations of one of the gas-dynamic variables are introduced. The modeling and analysis of the results of numerical calculations show the emergence of vortex structures in the shear flow of a three-dimensional accretion disk. Their movement is accompanied by a redistribution of matter and angular momentum in the volume of the disk, leading to accretion of matter onto the central body.</p>\",\"PeriodicalId\":55440,\"journal\":{\"name\":\"Astronomy Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy Reports\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063772923120053\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy Reports","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063772923120053","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
The Formation and the Evolution of Large-Scale Vortex Structures in Stellar Accetion Disks
Explaining the causes of angular momentum transfer in accretion stellar disks is an important astrophysical problem, since it is the process that determines the rate of accretion of matter onto the central gravitating body. Previously, within the framework of a two-dimensional approach, it was shown that the introduction of small perturbations into the flow of accretion disk leads to the appearance of shear instability. This process is accompanied by the development of large-scale vortex structures. Their movement and evolution lead to a redistribution of angular momentum in the accretion disk. The action of the described mechanism was previously studied numerically only within a two-dimensional approximation, so the goal of the current work is to carry out full-scale three-dimensional modeling. The processes under study are described within the framework of the system of equations of ideal gas dynamics. The article briefly describes the method for their numerical integration, which is based on a conservative finite-difference scheme and the solution of the Riemann problem. The initial data is a stationary toroidal gas state surrounded by a matter with low density and pressure. At the next step, small perturbations of one of the gas-dynamic variables are introduced. The modeling and analysis of the results of numerical calculations show the emergence of vortex structures in the shear flow of a three-dimensional accretion disk. Their movement is accompanied by a redistribution of matter and angular momentum in the volume of the disk, leading to accretion of matter onto the central body.
期刊介绍:
Astronomy Reports is an international peer reviewed journal that publishes original papers on astronomical topics, including theoretical and observational astrophysics, physics of the Sun, planetary astrophysics, radio astronomy, stellar astronomy, celestial mechanics, and astronomy methods and instrumentation.