Nur Aliah Natasha Md Shahrulnizam, Mohd Danial Mohd Efendy Goon, Sharaniza Ab Rahim, Sook Weih Lew, Siti Hamimah Sheikh Abdul Kadir, Effendi Ibrahim
{"title":"补充以棕榈为基础的富含生育三烯酚的组分(TRF)可调节以高脂肪饮食喂养的瘦肉精小鼠的心脏sod1表达、fxr靶基因表达和牛磺酸结合胆汁酸水平","authors":"Nur Aliah Natasha Md Shahrulnizam, Mohd Danial Mohd Efendy Goon, Sharaniza Ab Rahim, Sook Weih Lew, Siti Hamimah Sheikh Abdul Kadir, Effendi Ibrahim","doi":"10.1186/s12263-024-00742-9","DOIUrl":null,"url":null,"abstract":"Tocotrienol-rich fraction (TRF) has been reported to protect the heart from oxidative stress-induced inflammation. It is, however, unclear whether the protective effects of TRF against oxidative stress involve the activation of farnesoid X receptor (fxr), a bile acid receptor, and the regulation of bile acid metabolites. In the current study, we investigated the effects of TRF supplementation on antioxidant activities, expression of fxr and its target genes in cardiac tissue, and serum untargeted metabolomics of high-fat diet-fed mice. Mice were divided into high-fat diet (HFD) with or without TRF supplementation (control) for 6 weeks. At the end of the intervention, body weight (BW), waist circumference (WC), and random blood glucose were measured. Heart tissues were collected, and the gene expression of sod1, sod2, gpx, and fxr and its target genes shp and stat3 was determined. Serum was subjected to untargeted metabolomic analysis using UHPLC-Orbitrap. In comparison to the control, the WC of the TRF-treated group was higher (p >0.05) than that of the HFD-only group, in addition there was no significant difference in weight or random blood glucose level. Downregulation of sod1, sod2, and gpx expression was observed in TRF-treated mice; however, only sod1 was significant when compared to the HFD only group. The expression of cardiac shp (fxr target gene) was significantly upregulated, but stat3 was significantly downregulated in the TRF-treated group compared to the HFD-only group. Biochemical pathways found to be influenced by TRF supplementation include bile acid secretion, primary bile acid biosynthesis, and biotin and cholesterol metabolism. In conclusion, TRF supplementation in HFD-fed mice affects antioxidant activities, and more interestingly, TRF also acts as a signaling molecule that is possibly involved in several bile acid-related biochemical pathways accompanied by an increase in cardiac fxr shp expression. This study provides new insight into TRF in deregulating bile acid receptors and metabolites in high-fat diet-fed mice.","PeriodicalId":54337,"journal":{"name":"Genes and Nutrition","volume":"1 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Palm-based tocotrienol-rich fraction (TRF) supplementation modulates cardiac sod1 expression, fxr target gene expression, and tauro-conjugated bile acid levels in aleptinemic mice fed a high-fat diet\",\"authors\":\"Nur Aliah Natasha Md Shahrulnizam, Mohd Danial Mohd Efendy Goon, Sharaniza Ab Rahim, Sook Weih Lew, Siti Hamimah Sheikh Abdul Kadir, Effendi Ibrahim\",\"doi\":\"10.1186/s12263-024-00742-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tocotrienol-rich fraction (TRF) has been reported to protect the heart from oxidative stress-induced inflammation. It is, however, unclear whether the protective effects of TRF against oxidative stress involve the activation of farnesoid X receptor (fxr), a bile acid receptor, and the regulation of bile acid metabolites. In the current study, we investigated the effects of TRF supplementation on antioxidant activities, expression of fxr and its target genes in cardiac tissue, and serum untargeted metabolomics of high-fat diet-fed mice. Mice were divided into high-fat diet (HFD) with or without TRF supplementation (control) for 6 weeks. At the end of the intervention, body weight (BW), waist circumference (WC), and random blood glucose were measured. Heart tissues were collected, and the gene expression of sod1, sod2, gpx, and fxr and its target genes shp and stat3 was determined. Serum was subjected to untargeted metabolomic analysis using UHPLC-Orbitrap. In comparison to the control, the WC of the TRF-treated group was higher (p >0.05) than that of the HFD-only group, in addition there was no significant difference in weight or random blood glucose level. Downregulation of sod1, sod2, and gpx expression was observed in TRF-treated mice; however, only sod1 was significant when compared to the HFD only group. The expression of cardiac shp (fxr target gene) was significantly upregulated, but stat3 was significantly downregulated in the TRF-treated group compared to the HFD-only group. Biochemical pathways found to be influenced by TRF supplementation include bile acid secretion, primary bile acid biosynthesis, and biotin and cholesterol metabolism. In conclusion, TRF supplementation in HFD-fed mice affects antioxidant activities, and more interestingly, TRF also acts as a signaling molecule that is possibly involved in several bile acid-related biochemical pathways accompanied by an increase in cardiac fxr shp expression. This study provides new insight into TRF in deregulating bile acid receptors and metabolites in high-fat diet-fed mice.\",\"PeriodicalId\":54337,\"journal\":{\"name\":\"Genes and Nutrition\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes and Nutrition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12263-024-00742-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes and Nutrition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12263-024-00742-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Palm-based tocotrienol-rich fraction (TRF) supplementation modulates cardiac sod1 expression, fxr target gene expression, and tauro-conjugated bile acid levels in aleptinemic mice fed a high-fat diet
Tocotrienol-rich fraction (TRF) has been reported to protect the heart from oxidative stress-induced inflammation. It is, however, unclear whether the protective effects of TRF against oxidative stress involve the activation of farnesoid X receptor (fxr), a bile acid receptor, and the regulation of bile acid metabolites. In the current study, we investigated the effects of TRF supplementation on antioxidant activities, expression of fxr and its target genes in cardiac tissue, and serum untargeted metabolomics of high-fat diet-fed mice. Mice were divided into high-fat diet (HFD) with or without TRF supplementation (control) for 6 weeks. At the end of the intervention, body weight (BW), waist circumference (WC), and random blood glucose were measured. Heart tissues were collected, and the gene expression of sod1, sod2, gpx, and fxr and its target genes shp and stat3 was determined. Serum was subjected to untargeted metabolomic analysis using UHPLC-Orbitrap. In comparison to the control, the WC of the TRF-treated group was higher (p >0.05) than that of the HFD-only group, in addition there was no significant difference in weight or random blood glucose level. Downregulation of sod1, sod2, and gpx expression was observed in TRF-treated mice; however, only sod1 was significant when compared to the HFD only group. The expression of cardiac shp (fxr target gene) was significantly upregulated, but stat3 was significantly downregulated in the TRF-treated group compared to the HFD-only group. Biochemical pathways found to be influenced by TRF supplementation include bile acid secretion, primary bile acid biosynthesis, and biotin and cholesterol metabolism. In conclusion, TRF supplementation in HFD-fed mice affects antioxidant activities, and more interestingly, TRF also acts as a signaling molecule that is possibly involved in several bile acid-related biochemical pathways accompanied by an increase in cardiac fxr shp expression. This study provides new insight into TRF in deregulating bile acid receptors and metabolites in high-fat diet-fed mice.
期刊介绍:
This journal examines the relationship between genetics and nutrition, with the ultimate goal of improving human health. It publishes original research articles and review articles on preclinical research data coming largely from animal, cell culture and other experimental models as well as critical evaluations of human experimental data to help deliver products with medically proven use.