Fang Liu, Zhiyi Fu, Ge Li, Zhi Jin, Hui Liu, Yiyang Hao, Li Zhang
{"title":"非自回归线级代码补全","authors":"Fang Liu, Zhiyi Fu, Ge Li, Zhi Jin, Hui Liu, Yiyang Hao, Li Zhang","doi":"10.1145/3649594","DOIUrl":null,"url":null,"abstract":"<p>Software developers frequently use code completion tools to accelerate software development by suggesting the following code elements. Researchers usually employ AutoRegressive (AR) decoders to complete code sequences in a left-to-right, token-by-token fashion. To improve the accuracy and efficiency of code completion, we argue that tokens within a code statement have the potential to be predicted concurrently. In this paper, we first conduct an empirical study to analyze the dependency among the target tokens in line-level code completion. The results suggest that it is potentially practical to generate all statement tokens in parallel. To this end, we introduce SANAR, a simple and effective syntax-aware non-autoregressive model for line-level code completion. To further improve the quality of the generated code, we propose an adaptive and syntax-aware sampling strategy to boost the model’s performance. The experimental results obtained from two widely used datasets indicate that our model outperforms state-of-the-art code completion approaches of similar model size by a considerable margin, and is faster than these models with up to 9 × speed-up. Moreover, the extensive results additionally demonstrate that the enhancements achieved by SANAR become even more pronounced with larger model sizes, highlighting their significance.</p>","PeriodicalId":50933,"journal":{"name":"ACM Transactions on Software Engineering and Methodology","volume":"14 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Autoregressive Line-Level Code Completion\",\"authors\":\"Fang Liu, Zhiyi Fu, Ge Li, Zhi Jin, Hui Liu, Yiyang Hao, Li Zhang\",\"doi\":\"10.1145/3649594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Software developers frequently use code completion tools to accelerate software development by suggesting the following code elements. Researchers usually employ AutoRegressive (AR) decoders to complete code sequences in a left-to-right, token-by-token fashion. To improve the accuracy and efficiency of code completion, we argue that tokens within a code statement have the potential to be predicted concurrently. In this paper, we first conduct an empirical study to analyze the dependency among the target tokens in line-level code completion. The results suggest that it is potentially practical to generate all statement tokens in parallel. To this end, we introduce SANAR, a simple and effective syntax-aware non-autoregressive model for line-level code completion. To further improve the quality of the generated code, we propose an adaptive and syntax-aware sampling strategy to boost the model’s performance. The experimental results obtained from two widely used datasets indicate that our model outperforms state-of-the-art code completion approaches of similar model size by a considerable margin, and is faster than these models with up to 9 × speed-up. Moreover, the extensive results additionally demonstrate that the enhancements achieved by SANAR become even more pronounced with larger model sizes, highlighting their significance.</p>\",\"PeriodicalId\":50933,\"journal\":{\"name\":\"ACM Transactions on Software Engineering and Methodology\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Software Engineering and Methodology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3649594\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Software Engineering and Methodology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3649594","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Software developers frequently use code completion tools to accelerate software development by suggesting the following code elements. Researchers usually employ AutoRegressive (AR) decoders to complete code sequences in a left-to-right, token-by-token fashion. To improve the accuracy and efficiency of code completion, we argue that tokens within a code statement have the potential to be predicted concurrently. In this paper, we first conduct an empirical study to analyze the dependency among the target tokens in line-level code completion. The results suggest that it is potentially practical to generate all statement tokens in parallel. To this end, we introduce SANAR, a simple and effective syntax-aware non-autoregressive model for line-level code completion. To further improve the quality of the generated code, we propose an adaptive and syntax-aware sampling strategy to boost the model’s performance. The experimental results obtained from two widely used datasets indicate that our model outperforms state-of-the-art code completion approaches of similar model size by a considerable margin, and is faster than these models with up to 9 × speed-up. Moreover, the extensive results additionally demonstrate that the enhancements achieved by SANAR become even more pronounced with larger model sizes, highlighting their significance.
期刊介绍:
Designing and building a large, complex software system is a tremendous challenge. ACM Transactions on Software Engineering and Methodology (TOSEM) publishes papers on all aspects of that challenge: specification, design, development and maintenance. It covers tools and methodologies, languages, data structures, and algorithms. TOSEM also reports on successful efforts, noting practical lessons that can be scaled and transferred to other projects, and often looks at applications of innovative technologies. The tone is scholarly but readable; the content is worthy of study; the presentation is effective.