弗赖登塔尔谱定理和阿基米德向量网格中的足够多投影

IF 0.8 3区 数学 Q2 MATHEMATICS
Anthony W. Hager, Brian Wynne
{"title":"弗赖登塔尔谱定理和阿基米德向量网格中的足够多投影","authors":"Anthony W. Hager, Brian Wynne","doi":"10.1007/s11117-024-01033-8","DOIUrl":null,"url":null,"abstract":"<p>The Yosida representation for an Archimedean vector lattice <i>A</i> with weak unit <i>u</i>, denoted (<i>A</i>, <i>u</i>), reveals similarities between the ideas of the title, FST and SMP. If <i>A</i> is Archimedean, the conclusion of the FST means exactly that for each <span>\\(0 &lt; e \\in A\\)</span>, the Yosida space for <span>\\((e^{dd},e)\\)</span>, denoted <span>\\(Y_e\\)</span>, has a base of clopen sets. This yields a short “Yosida based\" proof of FST. On the other hand, SMP implies that each <span>\\(Y_e\\)</span> has a <span>\\(\\pi \\)</span>-base of clopen sets. The converse fails, but holds if <i>A</i> has a strong unit (and in a somewhat more general situation).</p>","PeriodicalId":54596,"journal":{"name":"Positivity","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Freudenthal spectral theorem and sufficiently many projections in Archimedean vector lattices\",\"authors\":\"Anthony W. Hager, Brian Wynne\",\"doi\":\"10.1007/s11117-024-01033-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Yosida representation for an Archimedean vector lattice <i>A</i> with weak unit <i>u</i>, denoted (<i>A</i>, <i>u</i>), reveals similarities between the ideas of the title, FST and SMP. If <i>A</i> is Archimedean, the conclusion of the FST means exactly that for each <span>\\\\(0 &lt; e \\\\in A\\\\)</span>, the Yosida space for <span>\\\\((e^{dd},e)\\\\)</span>, denoted <span>\\\\(Y_e\\\\)</span>, has a base of clopen sets. This yields a short “Yosida based\\\" proof of FST. On the other hand, SMP implies that each <span>\\\\(Y_e\\\\)</span> has a <span>\\\\(\\\\pi \\\\)</span>-base of clopen sets. The converse fails, but holds if <i>A</i> has a strong unit (and in a somewhat more general situation).</p>\",\"PeriodicalId\":54596,\"journal\":{\"name\":\"Positivity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Positivity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11117-024-01033-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Positivity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11117-024-01033-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

具有弱单位 u 的阿基米德向量网格 A 的约西达表示(表示为 (A, u))揭示了标题、FST 和 SMP 之间的相似性。如果 A 是阿基米德的,那么 FST 的结论就意味着,对于每个 \(0 < e \in A\), \((e^{dd},e)\) 的 Yosida 空间,表示为 \(Y_e\),有一个开集的基。这就得到了一个简短的 "基于 Yosida "的 FST 证明。另一方面,SMP 意味着每个 \(Y_e\) 都有一个开集的基(\pi \)。反之亦然,但如果 A 有一个强单元则成立(在更一般的情况下)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Freudenthal spectral theorem and sufficiently many projections in Archimedean vector lattices

The Yosida representation for an Archimedean vector lattice A with weak unit u, denoted (Au), reveals similarities between the ideas of the title, FST and SMP. If A is Archimedean, the conclusion of the FST means exactly that for each \(0 < e \in A\), the Yosida space for \((e^{dd},e)\), denoted \(Y_e\), has a base of clopen sets. This yields a short “Yosida based" proof of FST. On the other hand, SMP implies that each \(Y_e\) has a \(\pi \)-base of clopen sets. The converse fails, but holds if A has a strong unit (and in a somewhat more general situation).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Positivity
Positivity 数学-数学
CiteScore
1.80
自引率
10.00%
发文量
88
审稿时长
>12 weeks
期刊介绍: The purpose of Positivity is to provide an outlet for high quality original research in all areas of analysis and its applications to other disciplines having a clear and substantive link to the general theme of positivity. Specifically, articles that illustrate applications of positivity to other disciplines - including but not limited to - economics, engineering, life sciences, physics and statistical decision theory are welcome. The scope of Positivity is to publish original papers in all areas of mathematics and its applications that are influenced by positivity concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信