基于 Ti? S 键建立载流子传输通道并提高 MXene 量子点-ZnIn2S4 在氨合成中的光催化性能

IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Infomat Pub Date : 2024-02-23 DOI:10.1002/inf2.12535
Xueying Cheng, Renquan Guan, Zhengkai Wu, Yingnan Sun, Weilong Che, Qingkun Shang
{"title":"基于 Ti? S 键建立载流子传输通道并提高 MXene 量子点-ZnIn2S4 在氨合成中的光催化性能","authors":"Xueying Cheng,&nbsp;Renquan Guan,&nbsp;Zhengkai Wu,&nbsp;Yingnan Sun,&nbsp;Weilong Che,&nbsp;Qingkun Shang","doi":"10.1002/inf2.12535","DOIUrl":null,"url":null,"abstract":"<p>In the process of photocatalytic synthesis of ammonia, the kinetics of carrier separation and transport, adsorption of nitrogen, and activation of the NN triple bond are key factors that directly affect the efficiency of converting nitrogen to ammonia. Here, we report a new strategy for anchoring MXene quantum dots (MXene QDs) onto the surface of ZnIn<sub>2</sub>S<sub>4</sub> by forming Ti<span></span>S bonds, which provide a channel for the rapid separation and transport of charge carriers and effectively extend the lifespan of photogenerated carriers. The unique charge distribution caused by the sulfurization of the MXene QDs further enhances the performance of the photocatalysts for the adsorption and activation of nitrogen. The photocatalytic ammonia synthesis efficiency of MXene QDs–ZnIn<sub>2</sub>S<sub>4</sub> can reach up to 360.5 μmol g<sup>−1</sup> h<sup>−1</sup>. Density functional theory calculations, various in situ techniques, and ultrafast spectroscopy are used to characterize the successful construction of Ti<span></span>S bonds and the dynamic nature of excited state charge carriers in MXene QDs–ZnIn<sub>2</sub>S<sub>4</sub>, as well as their impact on nitrogen adsorption activation and photocatalytic ammonia synthesis efficiency. This study provides a new example of how to improve nitrogen adsorption and activation in photocatalytic material systems and enhance charge carrier dynamics to achieve efficient photocatalytic nitrogen conversion.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12535","citationCount":"0","resultStr":"{\"title\":\"Establishing carrier transport channels based on TiS bonds and enhancing the photocatalytic performance of MXene quantum dots–ZnIn2S4 for ammonia synthesis\",\"authors\":\"Xueying Cheng,&nbsp;Renquan Guan,&nbsp;Zhengkai Wu,&nbsp;Yingnan Sun,&nbsp;Weilong Che,&nbsp;Qingkun Shang\",\"doi\":\"10.1002/inf2.12535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the process of photocatalytic synthesis of ammonia, the kinetics of carrier separation and transport, adsorption of nitrogen, and activation of the NN triple bond are key factors that directly affect the efficiency of converting nitrogen to ammonia. Here, we report a new strategy for anchoring MXene quantum dots (MXene QDs) onto the surface of ZnIn<sub>2</sub>S<sub>4</sub> by forming Ti<span></span>S bonds, which provide a channel for the rapid separation and transport of charge carriers and effectively extend the lifespan of photogenerated carriers. The unique charge distribution caused by the sulfurization of the MXene QDs further enhances the performance of the photocatalysts for the adsorption and activation of nitrogen. The photocatalytic ammonia synthesis efficiency of MXene QDs–ZnIn<sub>2</sub>S<sub>4</sub> can reach up to 360.5 μmol g<sup>−1</sup> h<sup>−1</sup>. Density functional theory calculations, various in situ techniques, and ultrafast spectroscopy are used to characterize the successful construction of Ti<span></span>S bonds and the dynamic nature of excited state charge carriers in MXene QDs–ZnIn<sub>2</sub>S<sub>4</sub>, as well as their impact on nitrogen adsorption activation and photocatalytic ammonia synthesis efficiency. This study provides a new example of how to improve nitrogen adsorption and activation in photocatalytic material systems and enhance charge carrier dynamics to achieve efficient photocatalytic nitrogen conversion.\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":48538,\"journal\":{\"name\":\"Infomat\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":22.7000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12535\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infomat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12535\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12535","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在光催化合成氨的过程中,载流子的分离和运输动力学、氮的吸附以及 NN 三键的活化是直接影响氮转化为氨的效率的关键因素。在此,我们报告了一种通过形成 TiS 键将 MXene 量子点(MXene QDs)锚定在 ZnIn2S4 表面的新策略,它为电荷载流子的快速分离和传输提供了通道,并有效延长了光生载流子的寿命。MXene QDs硫化所产生的独特电荷分布进一步提高了光催化剂吸附和活化氮气的性能。MXene QDs-ZnIn2S4 的光催化氨合成效率可达 360.5 μmol g-1 h-1。该研究利用密度泛函理论计算、各种原位技术和超快光谱技术来表征 MXene QDs-ZnIn2S4 中 TiS 键的成功构建和激发态电荷载流子的动态性质,以及它们对氮吸附活化和光催化氨合成效率的影响。这项研究为如何改善光催化材料体系中氮的吸附和活化以及增强电荷载流子动力学以实现高效光催化氮转化提供了一个新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Establishing carrier transport channels based on TiS bonds and enhancing the photocatalytic performance of MXene quantum dots–ZnIn2S4 for ammonia synthesis

Establishing carrier transport channels based on TiS bonds and enhancing the photocatalytic performance of MXene quantum dots–ZnIn2S4 for ammonia synthesis

Establishing carrier transport channels based on TiS bonds and enhancing the photocatalytic performance of MXene quantum dots–ZnIn2S4 for ammonia synthesis

In the process of photocatalytic synthesis of ammonia, the kinetics of carrier separation and transport, adsorption of nitrogen, and activation of the NN triple bond are key factors that directly affect the efficiency of converting nitrogen to ammonia. Here, we report a new strategy for anchoring MXene quantum dots (MXene QDs) onto the surface of ZnIn2S4 by forming TiS bonds, which provide a channel for the rapid separation and transport of charge carriers and effectively extend the lifespan of photogenerated carriers. The unique charge distribution caused by the sulfurization of the MXene QDs further enhances the performance of the photocatalysts for the adsorption and activation of nitrogen. The photocatalytic ammonia synthesis efficiency of MXene QDs–ZnIn2S4 can reach up to 360.5 μmol g−1 h−1. Density functional theory calculations, various in situ techniques, and ultrafast spectroscopy are used to characterize the successful construction of TiS bonds and the dynamic nature of excited state charge carriers in MXene QDs–ZnIn2S4, as well as their impact on nitrogen adsorption activation and photocatalytic ammonia synthesis efficiency. This study provides a new example of how to improve nitrogen adsorption and activation in photocatalytic material systems and enhance charge carrier dynamics to achieve efficient photocatalytic nitrogen conversion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Infomat
Infomat MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
37.70
自引率
3.10%
发文量
111
审稿时长
8 weeks
期刊介绍: InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信