通过洛伦兹 3-Lie 群中的anholonomic 坐标的几何相位和哈希莫托类映射

3区 物理与天体物理 Q1 Engineering
Nevin Ertuğ Gürbüz
{"title":"通过洛伦兹 3-Lie 群中的anholonomic 坐标的几何相位和哈希莫托类映射","authors":"Nevin Ertuğ Gürbüz","doi":"10.1080/17455030.2024.2319873","DOIUrl":null,"url":null,"abstract":"In this work, we obtain intrinsic derivatives of the Frenet–Serret (FS) triad in the n, b−lines directions within a three-dimensional Lorentzian Lie group (3LLg). Additionally, we present some form...","PeriodicalId":23598,"journal":{"name":"Waves in Random and Complex Media","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric phase and Hasimoto-like maps via the anholonomic coordinates in Lorentzian 3-Lie group\",\"authors\":\"Nevin Ertuğ Gürbüz\",\"doi\":\"10.1080/17455030.2024.2319873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we obtain intrinsic derivatives of the Frenet–Serret (FS) triad in the n, b−lines directions within a three-dimensional Lorentzian Lie group (3LLg). Additionally, we present some form...\",\"PeriodicalId\":23598,\"journal\":{\"name\":\"Waves in Random and Complex Media\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waves in Random and Complex Media\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/17455030.2024.2319873\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waves in Random and Complex Media","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/17455030.2024.2319873","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们在三维洛伦兹李群(3LLg)中获得了弗莱涅-塞雷特(Frenet-Serret,FS)三元组在 n、b 线方向上的本征导数。此外,我们还提出了一些形式...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric phase and Hasimoto-like maps via the anholonomic coordinates in Lorentzian 3-Lie group
In this work, we obtain intrinsic derivatives of the Frenet–Serret (FS) triad in the n, b−lines directions within a three-dimensional Lorentzian Lie group (3LLg). Additionally, we present some form...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Waves in Random and Complex Media
Waves in Random and Complex Media 物理-物理:综合
自引率
0.00%
发文量
677
审稿时长
3.0 months
期刊介绍: Waves in Random and Complex Media (formerly Waves in Random Media ) is a broad, interdisciplinary journal that reports theoretical, applied and experimental research related to any wave phenomena. The field of wave phenomena is all-pervading, fast-moving and exciting; more and more, researchers are looking for a journal which addresses the understanding of wave-matter interactions in increasingly complex natural and engineered media. With its foundations in the scattering and propagation community, Waves in Random and Complex Media is becoming a key forum for research in both established fields such as imaging through turbulence, as well as emerging fields such as metamaterials. The Journal is of interest to scientists and engineers working in the field of wave propagation, scattering and imaging in random or complex media. Papers on theoretical developments, experimental results and analytical/numerical studies are considered for publication, as are deterministic problems when also linked to random or complex media. Papers are expected to report original work, and must be comprehensible and of general interest to the broad community working with wave phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信