Hesham ElSawy;Ainur Zhaikhan;Mustafa A. Kishk;Mohamed-Slim Alouini
{"title":"关于大规模无线网络中应用的渗透理论的教程与研究","authors":"Hesham ElSawy;Ainur Zhaikhan;Mustafa A. Kishk;Mohamed-Slim Alouini","doi":"10.1109/COMST.2023.3336194","DOIUrl":null,"url":null,"abstract":"Connectivity is an important key performance indicator and a focal point of research in large-scale wireless networks. Due to path-loss attenuation of electromagnetic waves, direct wireless connectivity is limited to proximate devices. Nevertheless, connectivity among distant devices can still be attained through a sequence of consecutive multi-hop communication links, which enables routing and disseminating legitimate information across wireless ad hoc networks. Multi-hop connectivity is also foundational for data aggregation in the Internet of things (IoT) and cyberphysical systems (CPS). On the downside, multi-hop wireless transmissions increase susceptibility to eavesdropping and enable malicious network attacks. Hence, security-aware network connectivity is required to maintain communication privacy, detect and isolate malicious devices, and thwart the spreading of illegitimate traffic (e.g., viruses, worms, falsified data, illegitimate control, etc.). In 5G and beyond networks, an intricate balance between connectivity, privacy, and security is a necessity due to the proliferating IoT and CPS, which are featured with massive number of wireless devices that can directly communicate together (e.g., device-to-device, machine-to-machine, and vehicle-to-vehicle communication). In this regards, graph theory represents a foundational mathematical tool to model the network physical topology. In particular, random geometric graphs (RGGs) capture the inherently random locations and wireless interconnections among the spatially distributed devices. Percolation theory is then utilized to characterize and control distant multi-hop connectivity on network graphs. Recently, percolation theory over RGGs has been widely utilized to study connectivity, privacy, and security of several types of wireless networks. The impact and utilization of percolation theory are expected to further increase in the IoT/CPS era, which motivates this tutorial. Towards this end, we first introduce the preliminaries of graph and percolation theories in the context of wireless networks. Next, we overview and explain their application to various types of wireless networks.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"26 1","pages":"428-460"},"PeriodicalIF":34.4000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Tutorial-Cum-Survey on Percolation Theory With Applications in Large-Scale Wireless Networks\",\"authors\":\"Hesham ElSawy;Ainur Zhaikhan;Mustafa A. Kishk;Mohamed-Slim Alouini\",\"doi\":\"10.1109/COMST.2023.3336194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Connectivity is an important key performance indicator and a focal point of research in large-scale wireless networks. Due to path-loss attenuation of electromagnetic waves, direct wireless connectivity is limited to proximate devices. Nevertheless, connectivity among distant devices can still be attained through a sequence of consecutive multi-hop communication links, which enables routing and disseminating legitimate information across wireless ad hoc networks. Multi-hop connectivity is also foundational for data aggregation in the Internet of things (IoT) and cyberphysical systems (CPS). On the downside, multi-hop wireless transmissions increase susceptibility to eavesdropping and enable malicious network attacks. Hence, security-aware network connectivity is required to maintain communication privacy, detect and isolate malicious devices, and thwart the spreading of illegitimate traffic (e.g., viruses, worms, falsified data, illegitimate control, etc.). In 5G and beyond networks, an intricate balance between connectivity, privacy, and security is a necessity due to the proliferating IoT and CPS, which are featured with massive number of wireless devices that can directly communicate together (e.g., device-to-device, machine-to-machine, and vehicle-to-vehicle communication). In this regards, graph theory represents a foundational mathematical tool to model the network physical topology. In particular, random geometric graphs (RGGs) capture the inherently random locations and wireless interconnections among the spatially distributed devices. Percolation theory is then utilized to characterize and control distant multi-hop connectivity on network graphs. Recently, percolation theory over RGGs has been widely utilized to study connectivity, privacy, and security of several types of wireless networks. The impact and utilization of percolation theory are expected to further increase in the IoT/CPS era, which motivates this tutorial. Towards this end, we first introduce the preliminaries of graph and percolation theories in the context of wireless networks. Next, we overview and explain their application to various types of wireless networks.\",\"PeriodicalId\":55029,\"journal\":{\"name\":\"IEEE Communications Surveys and Tutorials\",\"volume\":\"26 1\",\"pages\":\"428-460\"},\"PeriodicalIF\":34.4000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Surveys and Tutorials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10330785/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Surveys and Tutorials","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10330785/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Tutorial-Cum-Survey on Percolation Theory With Applications in Large-Scale Wireless Networks
Connectivity is an important key performance indicator and a focal point of research in large-scale wireless networks. Due to path-loss attenuation of electromagnetic waves, direct wireless connectivity is limited to proximate devices. Nevertheless, connectivity among distant devices can still be attained through a sequence of consecutive multi-hop communication links, which enables routing and disseminating legitimate information across wireless ad hoc networks. Multi-hop connectivity is also foundational for data aggregation in the Internet of things (IoT) and cyberphysical systems (CPS). On the downside, multi-hop wireless transmissions increase susceptibility to eavesdropping and enable malicious network attacks. Hence, security-aware network connectivity is required to maintain communication privacy, detect and isolate malicious devices, and thwart the spreading of illegitimate traffic (e.g., viruses, worms, falsified data, illegitimate control, etc.). In 5G and beyond networks, an intricate balance between connectivity, privacy, and security is a necessity due to the proliferating IoT and CPS, which are featured with massive number of wireless devices that can directly communicate together (e.g., device-to-device, machine-to-machine, and vehicle-to-vehicle communication). In this regards, graph theory represents a foundational mathematical tool to model the network physical topology. In particular, random geometric graphs (RGGs) capture the inherently random locations and wireless interconnections among the spatially distributed devices. Percolation theory is then utilized to characterize and control distant multi-hop connectivity on network graphs. Recently, percolation theory over RGGs has been widely utilized to study connectivity, privacy, and security of several types of wireless networks. The impact and utilization of percolation theory are expected to further increase in the IoT/CPS era, which motivates this tutorial. Towards this end, we first introduce the preliminaries of graph and percolation theories in the context of wireless networks. Next, we overview and explain their application to various types of wireless networks.
期刊介绍:
IEEE Communications Surveys & Tutorials is an online journal published by the IEEE Communications Society for tutorials and surveys covering all aspects of the communications field. Telecommunications technology is progressing at a rapid pace, and the IEEE Communications Society is committed to providing researchers and other professionals the information and tools to stay abreast. IEEE Communications Surveys and Tutorials focuses on integrating and adding understanding to the existing literature on communications, putting results in context. Whether searching for in-depth information about a familiar area or an introduction into a new area, IEEE Communications Surveys & Tutorials aims to be the premier source of peer-reviewed, comprehensive tutorials and surveys, and pointers to further sources. IEEE Communications Surveys & Tutorials publishes only articles exclusively written for IEEE Communications Surveys & Tutorials and go through a rigorous review process before their publication in the quarterly issues.
A tutorial article in the IEEE Communications Surveys & Tutorials should be designed to help the reader to become familiar with and learn something specific about a chosen topic. In contrast, the term survey, as applied here, is defined to mean a survey of the literature. A survey article in IEEE Communications Surveys & Tutorials should provide a comprehensive review of developments in a selected area, covering its development from its inception to its current state and beyond, and illustrating its development through liberal citations from the literature. Both tutorials and surveys should be tutorial in nature and should be written in a style comprehensible to readers outside the specialty of the article.