一维非谐波势的高阶多项式复不变式

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
S.B. Bhardwaj, Ram Mehar Singh, Vipin Kumar, Narender Kumar, Fakir Chand, Shalini Gupta
{"title":"一维非谐波势的高阶多项式复不变式","authors":"S.B. Bhardwaj,&nbsp;Ram Mehar Singh,&nbsp;Vipin Kumar,&nbsp;Narender Kumar,&nbsp;Fakir Chand,&nbsp;Shalini Gupta","doi":"10.1016/S0034-4877(24)00011-9","DOIUrl":null,"url":null,"abstract":"<div><p>Exact quadratic in momenta complex invariants are investigated for both time independent and time dependent one-dimensional Hamiltonian systems possessing higher order nonlinearities within the framework of the rationalization method. The extended complex phase space approach is utilized to map a real system into complex space. Such invariants are expected to play a role in the analysis of complex trajectories and help to understand some new phenomena associated with complex potentials.</p></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0034487724000119/pdfft?md5=7de74f018141c5f672b53eea0e7fe658&pid=1-s2.0-S0034487724000119-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Higher order polynomial complex invariants for one-dimensional anharmonic potentials\",\"authors\":\"S.B. Bhardwaj,&nbsp;Ram Mehar Singh,&nbsp;Vipin Kumar,&nbsp;Narender Kumar,&nbsp;Fakir Chand,&nbsp;Shalini Gupta\",\"doi\":\"10.1016/S0034-4877(24)00011-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Exact quadratic in momenta complex invariants are investigated for both time independent and time dependent one-dimensional Hamiltonian systems possessing higher order nonlinearities within the framework of the rationalization method. The extended complex phase space approach is utilized to map a real system into complex space. Such invariants are expected to play a role in the analysis of complex trajectories and help to understand some new phenomena associated with complex potentials.</p></div>\",\"PeriodicalId\":49630,\"journal\":{\"name\":\"Reports on Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0034487724000119/pdfft?md5=7de74f018141c5f672b53eea0e7fe658&pid=1-s2.0-S0034487724000119-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034487724000119\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034487724000119","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

在合理化方法的框架内,研究了具有高阶非线性的独立于时间和依赖于时间的一维哈密顿系统的精确二次矩复不变式。利用扩展复相空间方法将实数系统映射到复数空间。这种不变量有望在复杂轨迹分析中发挥作用,并有助于理解与复杂势相关的一些新现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher order polynomial complex invariants for one-dimensional anharmonic potentials

Exact quadratic in momenta complex invariants are investigated for both time independent and time dependent one-dimensional Hamiltonian systems possessing higher order nonlinearities within the framework of the rationalization method. The extended complex phase space approach is utilized to map a real system into complex space. Such invariants are expected to play a role in the analysis of complex trajectories and help to understand some new phenomena associated with complex potentials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reports on Mathematical Physics
Reports on Mathematical Physics 物理-物理:数学物理
CiteScore
1.80
自引率
0.00%
发文量
40
审稿时长
6 months
期刊介绍: Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信