多流体力学达西-福克海默流体的新规则性标准

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Saeed ur Rahman, José Luis Díaz Palencia
{"title":"多流体力学达西-福克海默流体的新规则性标准","authors":"Saeed ur Rahman,&nbsp;José Luis Díaz Palencia","doi":"10.1016/S0034-4877(24)00008-9","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of the presented article is to develop some new global regularity criteria for a magnetohydrodynamic (MHD) fluid flowing in a saturated porous medium. The effect of the porous medium, over the fluid flow, is characterized by a Darcy–Forchheimer law. The fluid, under study, is considered as one-dimensional and flowing in the <em>x–</em>direction with velocity component <em>u.</em> In addition, such a component is assumed to vary with the <em>y–</em>direction, i.e. <em>u</em>(<em>y</em>). Then, given the vorticity function\n<span><math><mrow><mi>w</mi><mo>=</mo><mo>-</mo><mfrac><mrow><mo>∂</mo><mi>u</mi></mrow><mrow><mo>∂</mo><mi>y</mi></mrow></mfrac></mrow></math></span>, such that\n<span><math><mrow><msubsup><mrow><mrow><mo>‖</mo><mi>w</mi><mo>‖</mo></mrow></mrow><mrow><mtext>BMO</mtext></mrow><mn>2</mn></msubsup></mrow></math></span> is sufficiently small, we develop the regularity criteria under the scope of the <em>L</em><sup>2</sup> space. We extend our results to the spaces <em>L<sup>s</sup></em>, where <em>s</em> &gt; 2. Afterward, we prove the Liouville-type theorem for the MHD Darcy–Forchheimer flow equation. Eventually, we obtain some characterization about the asymptotic behaviour of solutions, particularly, the nonuniform convergence in <em>L</em><sup>2</sup> for\n<span><math><mrow><mi>t</mi><mo>→</mo><mo>∞</mo></mrow></math></span>.</p></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":"93 1","pages":"Pages 21-36"},"PeriodicalIF":1.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0034487724000089/pdfft?md5=0d1891c76d0aee709cdeee928726e3d4&pid=1-s2.0-S0034487724000089-main.pdf","citationCount":"0","resultStr":"{\"title\":\"New regularity criteria for an MHD Darcy-Forchheimer fluid\",\"authors\":\"Saeed ur Rahman,&nbsp;José Luis Díaz Palencia\",\"doi\":\"10.1016/S0034-4877(24)00008-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The purpose of the presented article is to develop some new global regularity criteria for a magnetohydrodynamic (MHD) fluid flowing in a saturated porous medium. The effect of the porous medium, over the fluid flow, is characterized by a Darcy–Forchheimer law. The fluid, under study, is considered as one-dimensional and flowing in the <em>x–</em>direction with velocity component <em>u.</em> In addition, such a component is assumed to vary with the <em>y–</em>direction, i.e. <em>u</em>(<em>y</em>). Then, given the vorticity function\\n<span><math><mrow><mi>w</mi><mo>=</mo><mo>-</mo><mfrac><mrow><mo>∂</mo><mi>u</mi></mrow><mrow><mo>∂</mo><mi>y</mi></mrow></mfrac></mrow></math></span>, such that\\n<span><math><mrow><msubsup><mrow><mrow><mo>‖</mo><mi>w</mi><mo>‖</mo></mrow></mrow><mrow><mtext>BMO</mtext></mrow><mn>2</mn></msubsup></mrow></math></span> is sufficiently small, we develop the regularity criteria under the scope of the <em>L</em><sup>2</sup> space. We extend our results to the spaces <em>L<sup>s</sup></em>, where <em>s</em> &gt; 2. Afterward, we prove the Liouville-type theorem for the MHD Darcy–Forchheimer flow equation. Eventually, we obtain some characterization about the asymptotic behaviour of solutions, particularly, the nonuniform convergence in <em>L</em><sup>2</sup> for\\n<span><math><mrow><mi>t</mi><mo>→</mo><mo>∞</mo></mrow></math></span>.</p></div>\",\"PeriodicalId\":49630,\"journal\":{\"name\":\"Reports on Mathematical Physics\",\"volume\":\"93 1\",\"pages\":\"Pages 21-36\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0034487724000089/pdfft?md5=0d1891c76d0aee709cdeee928726e3d4&pid=1-s2.0-S0034487724000089-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034487724000089\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034487724000089","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在为在饱和多孔介质中流动的磁流体(MHD)制定一些新的全局正则准则。多孔介质对流体流动的影响以达西-福克海默定律为特征。所研究的流体被视为一维流体,沿 x 方向流动,速度分量为 u。然后,给定涡度函数w=-∂u∂y,使得 "w "BMO2 足够小,我们在 L2 空间范围内建立正则准则。之后,我们证明了 MHD 达西-福克海默流动方程的柳维尔定理。最后,我们获得了关于解的渐近行为的一些特征,特别是在 L2 fort→∞ 中的非均匀收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New regularity criteria for an MHD Darcy-Forchheimer fluid

The purpose of the presented article is to develop some new global regularity criteria for a magnetohydrodynamic (MHD) fluid flowing in a saturated porous medium. The effect of the porous medium, over the fluid flow, is characterized by a Darcy–Forchheimer law. The fluid, under study, is considered as one-dimensional and flowing in the x–direction with velocity component u. In addition, such a component is assumed to vary with the y–direction, i.e. u(y). Then, given the vorticity function w=-uy, such that wBMO2 is sufficiently small, we develop the regularity criteria under the scope of the L2 space. We extend our results to the spaces Ls, where s > 2. Afterward, we prove the Liouville-type theorem for the MHD Darcy–Forchheimer flow equation. Eventually, we obtain some characterization about the asymptotic behaviour of solutions, particularly, the nonuniform convergence in L2 for t.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reports on Mathematical Physics
Reports on Mathematical Physics 物理-物理:数学物理
CiteScore
1.80
自引率
0.00%
发文量
40
审稿时长
6 months
期刊介绍: Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信