伽利略和卡罗尔霍奇星算子

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Marián Fecko
{"title":"伽利略和卡罗尔霍奇星算子","authors":"Marián Fecko","doi":"10.1016/S0034-4877(24)00007-7","DOIUrl":null,"url":null,"abstract":"<div><p>The standard Hodge star operator is naturally associated with metric tensor (and orientation). It is routinely used to concisely write down physics equations on, say, Lorentzian spacetimes. On Galilean (Carrollian) spacetimes, there is no canonical (nonsingular) metric tensor available. So, the usual construction of the Hodge star does not work. Here we propose analogs of the Hodge star operator on Galilean (Carrollian) spacetimes. They may be used to write down important physics equations, e.g. equations of Galilean (Carrollian) electrodynamics.</p></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0034487724000077/pdfft?md5=95dc18d8cfd864d5e9758bc25b1ea4dd&pid=1-s2.0-S0034487724000077-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Galilean and Carrollian Hodge star operators\",\"authors\":\"Marián Fecko\",\"doi\":\"10.1016/S0034-4877(24)00007-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The standard Hodge star operator is naturally associated with metric tensor (and orientation). It is routinely used to concisely write down physics equations on, say, Lorentzian spacetimes. On Galilean (Carrollian) spacetimes, there is no canonical (nonsingular) metric tensor available. So, the usual construction of the Hodge star does not work. Here we propose analogs of the Hodge star operator on Galilean (Carrollian) spacetimes. They may be used to write down important physics equations, e.g. equations of Galilean (Carrollian) electrodynamics.</p></div>\",\"PeriodicalId\":49630,\"journal\":{\"name\":\"Reports on Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0034487724000077/pdfft?md5=95dc18d8cfd864d5e9758bc25b1ea4dd&pid=1-s2.0-S0034487724000077-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034487724000077\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034487724000077","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

标准霍奇星算子与度量张量(和方向)天然相关。它通常用于简明地写出洛伦兹时空的物理方程。而在伽利略(卡罗尔)时空,则没有正则(非ingular)度量张量可用。因此,通常的霍奇星构造不起作用。在这里,我们提出了伽利略(卡罗尔)时空的霍奇星算子的类似物。它们可以用来写出重要的物理方程,例如伽利略(卡罗尔)电动力学方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Galilean and Carrollian Hodge star operators

The standard Hodge star operator is naturally associated with metric tensor (and orientation). It is routinely used to concisely write down physics equations on, say, Lorentzian spacetimes. On Galilean (Carrollian) spacetimes, there is no canonical (nonsingular) metric tensor available. So, the usual construction of the Hodge star does not work. Here we propose analogs of the Hodge star operator on Galilean (Carrollian) spacetimes. They may be used to write down important physics equations, e.g. equations of Galilean (Carrollian) electrodynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reports on Mathematical Physics
Reports on Mathematical Physics 物理-物理:数学物理
CiteScore
1.80
自引率
0.00%
发文量
40
审稿时长
6 months
期刊介绍: Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信