通过迁移学习改进心房颤动患者的分类。

Computing in cardiology Pub Date : 2023-10-01 Epub Date: 2023-12-26 DOI:10.22489/cinc.2023.412
Bram Hunt, Eugene Kwan, Tolga Tasdizen, Jake Bergquist, Matthias Lange, Benjamin Orkild, Robert S MacLeod, Derek J Dosdall, Ravi Ranjan
{"title":"通过迁移学习改进心房颤动患者的分类。","authors":"Bram Hunt, Eugene Kwan, Tolga Tasdizen, Jake Bergquist, Matthias Lange, Benjamin Orkild, Robert S MacLeod, Derek J Dosdall, Ravi Ranjan","doi":"10.22489/cinc.2023.412","DOIUrl":null,"url":null,"abstract":"<p><p>\"Drivers\" are theorized mechanisms for persistent atrial fibrillation. Machine learning algorithms have been used to identify drivers, but the small size of current driver datasets limits their performance. We hypothesized that pretraining with unsupervised learning on a large dataset of unlabeled electrograms would improve classifier accuracy on a smaller driver dataset. In this study, we used a SimCLR-based framework to pretrain a residual neural network on a dataset of 113K unlabeled 64-electrode measurements and found weighted testing accuracy to improve over a non-pretrained network (78.6±3.9% vs 71.9±3.3%). This lays ground for development of superior driver detection algorithms and supports use of transfer learning for other datasets of endocardial electrograms.</p>","PeriodicalId":72683,"journal":{"name":"Computing in cardiology","volume":"50 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10887411/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transfer Learning for Improved Classification of Drivers in Atrial Fibrillation.\",\"authors\":\"Bram Hunt, Eugene Kwan, Tolga Tasdizen, Jake Bergquist, Matthias Lange, Benjamin Orkild, Robert S MacLeod, Derek J Dosdall, Ravi Ranjan\",\"doi\":\"10.22489/cinc.2023.412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>\\\"Drivers\\\" are theorized mechanisms for persistent atrial fibrillation. Machine learning algorithms have been used to identify drivers, but the small size of current driver datasets limits their performance. We hypothesized that pretraining with unsupervised learning on a large dataset of unlabeled electrograms would improve classifier accuracy on a smaller driver dataset. In this study, we used a SimCLR-based framework to pretrain a residual neural network on a dataset of 113K unlabeled 64-electrode measurements and found weighted testing accuracy to improve over a non-pretrained network (78.6±3.9% vs 71.9±3.3%). This lays ground for development of superior driver detection algorithms and supports use of transfer learning for other datasets of endocardial electrograms.</p>\",\"PeriodicalId\":72683,\"journal\":{\"name\":\"Computing in cardiology\",\"volume\":\"50 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10887411/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing in cardiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/cinc.2023.412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/cinc.2023.412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

"驱动因素 "是持续性心房颤动的理论机制。机器学习算法已被用于识别驱动因素,但目前驱动因素数据集的规模较小,限制了其性能。我们假设,在未标记电图的大型数据集上进行无监督学习的预训练,将提高分类器在较小驱动程序数据集上的准确性。在这项研究中,我们使用了基于 SimCLR 的框架,在 113K 个未标记的 64 电极测量数据集上对残差神经网络进行了预训练,结果发现加权测试准确率比未预训练的网络有所提高(78.6±3.9% vs 71.9±3.3%)。这为开发卓越的驱动器检测算法奠定了基础,并支持将迁移学习用于其他心内膜电图数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transfer Learning for Improved Classification of Drivers in Atrial Fibrillation.

"Drivers" are theorized mechanisms for persistent atrial fibrillation. Machine learning algorithms have been used to identify drivers, but the small size of current driver datasets limits their performance. We hypothesized that pretraining with unsupervised learning on a large dataset of unlabeled electrograms would improve classifier accuracy on a smaller driver dataset. In this study, we used a SimCLR-based framework to pretrain a residual neural network on a dataset of 113K unlabeled 64-electrode measurements and found weighted testing accuracy to improve over a non-pretrained network (78.6±3.9% vs 71.9±3.3%). This lays ground for development of superior driver detection algorithms and supports use of transfer learning for other datasets of endocardial electrograms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信