David Stein, Daniela Ovadia, Stuart Katz, Preneet Cheema Brar
{"title":"肝脏因子与肥胖青少年内皮功能障碍和血管反应性指标之间的关系。","authors":"David Stein, Daniela Ovadia, Stuart Katz, Preneet Cheema Brar","doi":"10.1515/jpem-2023-0339","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Obesity-induced insulin resistance (IR) is known to influence hepatic cytokines (hepatokines), including fibroblast growth factor (FGF-21), fetuin-A, and chemerin. This study aimed to investigate the association between hepatokines and markers of endothelial dysfunction and vascular reactivity in obese adolescents.</p><p><strong>Methods: </strong>A total of 45 obese adolescents were categorized into three groups based on glucose tolerance: normal glucose tolerance (NGT), prediabetes (PD), and type 2 diabetes (T2D). We examined the relationships between FGF-21, fetuin-A, and chemerin with endothelial markers (plasminogen activator inhibitor-1 [PAI-1], intercellular adhesion molecule-1 [ICAM-1], and vascular cell adhesion marker-1 [VCAM-1]) and vascular surrogates (brachial artery reactivity testing [BART] and peak reactive hyperemia [PRH]).</p><p><strong>Results: </strong>Obese adolescents (age 16.2±1.2 years; 62 % female, 65 % Hispanic) with NGT (n=20), PD (n=14), and T2D (n=11) had significant differences between groups in BMI; waist-hip ratio (p=0.05), systolic BP (p=0.008), LDL-C (p=0.02), PAI-1 (p<0.001). FGF-21 pg/mL (mean±SD: NGT vs. PD vs. T2D 54±42; 266±286; 160±126 p=0.006) and fetuin-A ng/mL (266±80; 253±66; 313±50 p=0.018), were significantly different while chemerin ng/mL (26±5; 31±10; 28±2) did not significantly differ between the groups. Positive correlations were found between chemerin and both PAI-1 (r=0.6; p=0.05) and ICAM-1 (r=0.6; p=0.05), FGF-21 and PAI-1 (r=0.6; p<0.001), and fetuin-A with TNFα (r=-0.4; p=0.05). Negative correlations were found between chemerin and PRH (r= -0.5; p=0.017) and fetuin-A and PRH (r=-0.4; p=0.05).</p><p><strong>Conclusions: </strong>In our cohort, IR predicted higher FGF-21 levels suggesting a linear relationship may exist between the two parameters. Hepatokines can augment alterations in the microvascular milieu in obese adolescents as demonstrated by their associations with the markers PAI-1, ICAM-1, and PRH.</p>","PeriodicalId":50096,"journal":{"name":"Journal of Pediatric Endocrinology & Metabolism","volume":" ","pages":"309-316"},"PeriodicalIF":1.3000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Association of hepatokines with markers of endothelial dysfunction and vascular reactivity in obese adolescents.\",\"authors\":\"David Stein, Daniela Ovadia, Stuart Katz, Preneet Cheema Brar\",\"doi\":\"10.1515/jpem-2023-0339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Obesity-induced insulin resistance (IR) is known to influence hepatic cytokines (hepatokines), including fibroblast growth factor (FGF-21), fetuin-A, and chemerin. This study aimed to investigate the association between hepatokines and markers of endothelial dysfunction and vascular reactivity in obese adolescents.</p><p><strong>Methods: </strong>A total of 45 obese adolescents were categorized into three groups based on glucose tolerance: normal glucose tolerance (NGT), prediabetes (PD), and type 2 diabetes (T2D). We examined the relationships between FGF-21, fetuin-A, and chemerin with endothelial markers (plasminogen activator inhibitor-1 [PAI-1], intercellular adhesion molecule-1 [ICAM-1], and vascular cell adhesion marker-1 [VCAM-1]) and vascular surrogates (brachial artery reactivity testing [BART] and peak reactive hyperemia [PRH]).</p><p><strong>Results: </strong>Obese adolescents (age 16.2±1.2 years; 62 % female, 65 % Hispanic) with NGT (n=20), PD (n=14), and T2D (n=11) had significant differences between groups in BMI; waist-hip ratio (p=0.05), systolic BP (p=0.008), LDL-C (p=0.02), PAI-1 (p<0.001). FGF-21 pg/mL (mean±SD: NGT vs. PD vs. T2D 54±42; 266±286; 160±126 p=0.006) and fetuin-A ng/mL (266±80; 253±66; 313±50 p=0.018), were significantly different while chemerin ng/mL (26±5; 31±10; 28±2) did not significantly differ between the groups. Positive correlations were found between chemerin and both PAI-1 (r=0.6; p=0.05) and ICAM-1 (r=0.6; p=0.05), FGF-21 and PAI-1 (r=0.6; p<0.001), and fetuin-A with TNFα (r=-0.4; p=0.05). Negative correlations were found between chemerin and PRH (r= -0.5; p=0.017) and fetuin-A and PRH (r=-0.4; p=0.05).</p><p><strong>Conclusions: </strong>In our cohort, IR predicted higher FGF-21 levels suggesting a linear relationship may exist between the two parameters. Hepatokines can augment alterations in the microvascular milieu in obese adolescents as demonstrated by their associations with the markers PAI-1, ICAM-1, and PRH.</p>\",\"PeriodicalId\":50096,\"journal\":{\"name\":\"Journal of Pediatric Endocrinology & Metabolism\",\"volume\":\" \",\"pages\":\"309-316\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pediatric Endocrinology & Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/jpem-2023-0339\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/25 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q4\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pediatric Endocrinology & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/jpem-2023-0339","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/25 0:00:00","PubModel":"Print","JCR":"Q4","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Association of hepatokines with markers of endothelial dysfunction and vascular reactivity in obese adolescents.
Objectives: Obesity-induced insulin resistance (IR) is known to influence hepatic cytokines (hepatokines), including fibroblast growth factor (FGF-21), fetuin-A, and chemerin. This study aimed to investigate the association between hepatokines and markers of endothelial dysfunction and vascular reactivity in obese adolescents.
Methods: A total of 45 obese adolescents were categorized into three groups based on glucose tolerance: normal glucose tolerance (NGT), prediabetes (PD), and type 2 diabetes (T2D). We examined the relationships between FGF-21, fetuin-A, and chemerin with endothelial markers (plasminogen activator inhibitor-1 [PAI-1], intercellular adhesion molecule-1 [ICAM-1], and vascular cell adhesion marker-1 [VCAM-1]) and vascular surrogates (brachial artery reactivity testing [BART] and peak reactive hyperemia [PRH]).
Results: Obese adolescents (age 16.2±1.2 years; 62 % female, 65 % Hispanic) with NGT (n=20), PD (n=14), and T2D (n=11) had significant differences between groups in BMI; waist-hip ratio (p=0.05), systolic BP (p=0.008), LDL-C (p=0.02), PAI-1 (p<0.001). FGF-21 pg/mL (mean±SD: NGT vs. PD vs. T2D 54±42; 266±286; 160±126 p=0.006) and fetuin-A ng/mL (266±80; 253±66; 313±50 p=0.018), were significantly different while chemerin ng/mL (26±5; 31±10; 28±2) did not significantly differ between the groups. Positive correlations were found between chemerin and both PAI-1 (r=0.6; p=0.05) and ICAM-1 (r=0.6; p=0.05), FGF-21 and PAI-1 (r=0.6; p<0.001), and fetuin-A with TNFα (r=-0.4; p=0.05). Negative correlations were found between chemerin and PRH (r= -0.5; p=0.017) and fetuin-A and PRH (r=-0.4; p=0.05).
Conclusions: In our cohort, IR predicted higher FGF-21 levels suggesting a linear relationship may exist between the two parameters. Hepatokines can augment alterations in the microvascular milieu in obese adolescents as demonstrated by their associations with the markers PAI-1, ICAM-1, and PRH.
期刊介绍:
The aim of the Journal of Pediatric Endocrinology and Metabolism (JPEM) is to diffuse speedily new medical information by publishing clinical investigations in pediatric endocrinology and basic research from all over the world. JPEM is the only international journal dedicated exclusively to endocrinology in the neonatal, pediatric and adolescent age groups. JPEM is a high-quality journal dedicated to pediatric endocrinology in its broadest sense, which is needed at this time of rapid expansion of the field of endocrinology. JPEM publishes Reviews, Original Research, Case Reports, Short Communications and Letters to the Editor (including comments on published papers),. JPEM publishes supplements of proceedings and abstracts of pediatric endocrinology and diabetes society meetings.