Harry Ramcharran, Gregory Wetmore, Scott Cooper, Jacob Herrmann, Andrea Fonseca da Cruz, David W Kaczka, Joshua Satalin, Sarah Blair, Penny L Andrews, Nader M Habashi, Gary F Nieman, Michaela Kollisch-Singule
{"title":"肺损伤和腹部充气对时控适应性通气过程中呼吸力学和肺容量的影响","authors":"Harry Ramcharran, Gregory Wetmore, Scott Cooper, Jacob Herrmann, Andrea Fonseca da Cruz, David W Kaczka, Joshua Satalin, Sarah Blair, Penny L Andrews, Nader M Habashi, Gary F Nieman, Michaela Kollisch-Singule","doi":"10.4187/respcare.11745","DOIUrl":null,"url":null,"abstract":"<p><strong>Backgroud: </strong>Lung volume measurements are important for monitoring functional aeration and recruitment and may help guide adjustments in ventilator settings. The expiratory phase of airway pressure release ventilation (APRV) may provide physiologic information about lung volume based on the expiratory flow-time slope, angle, and time to approach a no-flow state (expiratory time [T<sub>E</sub>]). We hypothesized that expiratory flow would correlate with estimated lung volume (ELV) as measured using a modified nitrogen washout/washin technique in a large-animal lung injury model.</p><p><strong>Methods: </strong>Eight pigs (35.2 ± 1.0 kg) were mechanically ventilated using an Engström Carescape R860 on the APRV mode. All settings were held constant except the expiratory duration, which was adjusted based on the expiratory flow curve. Abdominal pressure was increased to 15 mm Hg in normal and injured lungs to replicate a combination of pulmonary and extrapulmonary lung injury. ELV was estimated using the Carescape FRC INview tool. The expiratory flow-time slope and T<sub>E</sub> were measured from the expiratory flow profile.</p><p><strong>Results: </strong>Lung elastance increased with induced lung injury from 29.3 ± 7.3 cm H<sub>2</sub>O/L to 39.9 ± 15.1cm H<sub>2</sub>O/L, and chest wall elastance increased with increasing intra-abdominal pressures (IAPs) from 15.3 ± 4.1 cm H<sub>2</sub>O/L to 25.7 ± 10.0 cm H<sub>2</sub>O/L in the normal lung and 15.8 ± 6.0 cm H<sub>2</sub>O/L to 33.0 ± 6.2 cm H<sub>2</sub>O/L in the injured lung (<i>P</i> = .39). ELV decreased from 1.90 ± 0.83 L in the injured lung to 0.67 ± 0.10 L by increasing IAP to 15 mm Hg. This had a significant correlation with a T<sub>E</sub> decrease from 2.3 ± 0.8 s to 1.0 ± 0.1 s in the injured group with increasing insufflation pressures (ρ = 0.95) and with the expiratory flow-time slope, which increased from 0.29 ± 0.06 L/s<sup>2</sup> to 0.63 ± 0.05 L/s<sup>2</sup> (ρ = 0.78).</p><p><strong>Conclusions: </strong>Changes in ELV over time, and the T<sub>E</sub> and flow-time slope, could be used to demonstrate evolving lung injury during APRV. Using the slope to infer changes in functional lung volume represents a unique, reproducible, real-time, bedside technique that does not interrupt ventilation and may be used for clinical interpretation.</p>","PeriodicalId":21125,"journal":{"name":"Respiratory care","volume":" ","pages":"1432-1443"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549635/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of Lung Injury and Abdominal Insufflation on Respiratory Mechanics and Lung Volume During Time-Controlled Adaptive Ventilation.\",\"authors\":\"Harry Ramcharran, Gregory Wetmore, Scott Cooper, Jacob Herrmann, Andrea Fonseca da Cruz, David W Kaczka, Joshua Satalin, Sarah Blair, Penny L Andrews, Nader M Habashi, Gary F Nieman, Michaela Kollisch-Singule\",\"doi\":\"10.4187/respcare.11745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Backgroud: </strong>Lung volume measurements are important for monitoring functional aeration and recruitment and may help guide adjustments in ventilator settings. The expiratory phase of airway pressure release ventilation (APRV) may provide physiologic information about lung volume based on the expiratory flow-time slope, angle, and time to approach a no-flow state (expiratory time [T<sub>E</sub>]). We hypothesized that expiratory flow would correlate with estimated lung volume (ELV) as measured using a modified nitrogen washout/washin technique in a large-animal lung injury model.</p><p><strong>Methods: </strong>Eight pigs (35.2 ± 1.0 kg) were mechanically ventilated using an Engström Carescape R860 on the APRV mode. All settings were held constant except the expiratory duration, which was adjusted based on the expiratory flow curve. Abdominal pressure was increased to 15 mm Hg in normal and injured lungs to replicate a combination of pulmonary and extrapulmonary lung injury. ELV was estimated using the Carescape FRC INview tool. The expiratory flow-time slope and T<sub>E</sub> were measured from the expiratory flow profile.</p><p><strong>Results: </strong>Lung elastance increased with induced lung injury from 29.3 ± 7.3 cm H<sub>2</sub>O/L to 39.9 ± 15.1cm H<sub>2</sub>O/L, and chest wall elastance increased with increasing intra-abdominal pressures (IAPs) from 15.3 ± 4.1 cm H<sub>2</sub>O/L to 25.7 ± 10.0 cm H<sub>2</sub>O/L in the normal lung and 15.8 ± 6.0 cm H<sub>2</sub>O/L to 33.0 ± 6.2 cm H<sub>2</sub>O/L in the injured lung (<i>P</i> = .39). ELV decreased from 1.90 ± 0.83 L in the injured lung to 0.67 ± 0.10 L by increasing IAP to 15 mm Hg. This had a significant correlation with a T<sub>E</sub> decrease from 2.3 ± 0.8 s to 1.0 ± 0.1 s in the injured group with increasing insufflation pressures (ρ = 0.95) and with the expiratory flow-time slope, which increased from 0.29 ± 0.06 L/s<sup>2</sup> to 0.63 ± 0.05 L/s<sup>2</sup> (ρ = 0.78).</p><p><strong>Conclusions: </strong>Changes in ELV over time, and the T<sub>E</sub> and flow-time slope, could be used to demonstrate evolving lung injury during APRV. Using the slope to infer changes in functional lung volume represents a unique, reproducible, real-time, bedside technique that does not interrupt ventilation and may be used for clinical interpretation.</p>\",\"PeriodicalId\":21125,\"journal\":{\"name\":\"Respiratory care\",\"volume\":\" \",\"pages\":\"1432-1443\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549635/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Respiratory care\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4187/respcare.11745\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CRITICAL CARE MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4187/respcare.11745","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
Effects of Lung Injury and Abdominal Insufflation on Respiratory Mechanics and Lung Volume During Time-Controlled Adaptive Ventilation.
Backgroud: Lung volume measurements are important for monitoring functional aeration and recruitment and may help guide adjustments in ventilator settings. The expiratory phase of airway pressure release ventilation (APRV) may provide physiologic information about lung volume based on the expiratory flow-time slope, angle, and time to approach a no-flow state (expiratory time [TE]). We hypothesized that expiratory flow would correlate with estimated lung volume (ELV) as measured using a modified nitrogen washout/washin technique in a large-animal lung injury model.
Methods: Eight pigs (35.2 ± 1.0 kg) were mechanically ventilated using an Engström Carescape R860 on the APRV mode. All settings were held constant except the expiratory duration, which was adjusted based on the expiratory flow curve. Abdominal pressure was increased to 15 mm Hg in normal and injured lungs to replicate a combination of pulmonary and extrapulmonary lung injury. ELV was estimated using the Carescape FRC INview tool. The expiratory flow-time slope and TE were measured from the expiratory flow profile.
Results: Lung elastance increased with induced lung injury from 29.3 ± 7.3 cm H2O/L to 39.9 ± 15.1cm H2O/L, and chest wall elastance increased with increasing intra-abdominal pressures (IAPs) from 15.3 ± 4.1 cm H2O/L to 25.7 ± 10.0 cm H2O/L in the normal lung and 15.8 ± 6.0 cm H2O/L to 33.0 ± 6.2 cm H2O/L in the injured lung (P = .39). ELV decreased from 1.90 ± 0.83 L in the injured lung to 0.67 ± 0.10 L by increasing IAP to 15 mm Hg. This had a significant correlation with a TE decrease from 2.3 ± 0.8 s to 1.0 ± 0.1 s in the injured group with increasing insufflation pressures (ρ = 0.95) and with the expiratory flow-time slope, which increased from 0.29 ± 0.06 L/s2 to 0.63 ± 0.05 L/s2 (ρ = 0.78).
Conclusions: Changes in ELV over time, and the TE and flow-time slope, could be used to demonstrate evolving lung injury during APRV. Using the slope to infer changes in functional lung volume represents a unique, reproducible, real-time, bedside technique that does not interrupt ventilation and may be used for clinical interpretation.
期刊介绍:
RESPIRATORY CARE is the official monthly science journal of the American Association for Respiratory Care. It is indexed in PubMed and included in ISI''s Web of Science.