{"title":"标度超复数上的正则函数","authors":"Daniel Alpay, Ilwoo Cho","doi":"10.1007/s00020-024-02756-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the regularity of <span>\\(\\mathbb {R}\\)</span>-differentiable functions on open connected subsets of the scaled hypercomplex numbers <span>\\(\\left\\{ \\mathbb {H}_{t}\\right\\} _{t\\in \\mathbb {R}}\\)</span> by studying the kernels of suitable differential operators <span>\\(\\left\\{ \\nabla _{t}\\right\\} _{t\\in \\mathbb {R}}\\)</span>, up to scales in the real field <span>\\(\\mathbb {R}\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regular Functions on the Scaled Hypercomplex Numbers\",\"authors\":\"Daniel Alpay, Ilwoo Cho\",\"doi\":\"10.1007/s00020-024-02756-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study the regularity of <span>\\\\(\\\\mathbb {R}\\\\)</span>-differentiable functions on open connected subsets of the scaled hypercomplex numbers <span>\\\\(\\\\left\\\\{ \\\\mathbb {H}_{t}\\\\right\\\\} _{t\\\\in \\\\mathbb {R}}\\\\)</span> by studying the kernels of suitable differential operators <span>\\\\(\\\\left\\\\{ \\\\nabla _{t}\\\\right\\\\} _{t\\\\in \\\\mathbb {R}}\\\\)</span>, up to scales in the real field <span>\\\\(\\\\mathbb {R}\\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00020-024-02756-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00020-024-02756-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Regular Functions on the Scaled Hypercomplex Numbers
In this paper, we study the regularity of \(\mathbb {R}\)-differentiable functions on open connected subsets of the scaled hypercomplex numbers \(\left\{ \mathbb {H}_{t}\right\} _{t\in \mathbb {R}}\) by studying the kernels of suitable differential operators \(\left\{ \nabla _{t}\right\} _{t\in \mathbb {R}}\), up to scales in the real field \(\mathbb {R}\).