{"title":"非交换欧几里得空间上的非线性偏微分方程","authors":"","doi":"10.1007/s00028-023-00928-5","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Noncommutative Euclidean spaces—otherwise known as Moyal spaces or quantum Euclidean spaces—are a standard example of a non-compact noncommutative geometry. Recent progress in the harmonic analysis of these spaces gives us the opportunity to highlight some of their peculiar features. For example, the theory of nonlinear partial differential equations has unexpected properties in this noncommutative setting. We develop elementary aspects of paradifferential calculus for noncommutative Euclidean spaces and give some applications to nonlinear evolution equations. We demonstrate how the analysis of some equations radically simplifies in the strictly noncommutative setting.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear partial differential equations on noncommutative Euclidean spaces\",\"authors\":\"\",\"doi\":\"10.1007/s00028-023-00928-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Noncommutative Euclidean spaces—otherwise known as Moyal spaces or quantum Euclidean spaces—are a standard example of a non-compact noncommutative geometry. Recent progress in the harmonic analysis of these spaces gives us the opportunity to highlight some of their peculiar features. For example, the theory of nonlinear partial differential equations has unexpected properties in this noncommutative setting. We develop elementary aspects of paradifferential calculus for noncommutative Euclidean spaces and give some applications to nonlinear evolution equations. We demonstrate how the analysis of some equations radically simplifies in the strictly noncommutative setting.</p>\",\"PeriodicalId\":51083,\"journal\":{\"name\":\"Journal of Evolution Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolution Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00028-023-00928-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-023-00928-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Nonlinear partial differential equations on noncommutative Euclidean spaces
Abstract
Noncommutative Euclidean spaces—otherwise known as Moyal spaces or quantum Euclidean spaces—are a standard example of a non-compact noncommutative geometry. Recent progress in the harmonic analysis of these spaces gives us the opportunity to highlight some of their peculiar features. For example, the theory of nonlinear partial differential equations has unexpected properties in this noncommutative setting. We develop elementary aspects of paradifferential calculus for noncommutative Euclidean spaces and give some applications to nonlinear evolution equations. We demonstrate how the analysis of some equations radically simplifies in the strictly noncommutative setting.
期刊介绍:
The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications.
Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field.
Particular topics covered by the journal are:
Linear and Nonlinear Semigroups
Parabolic and Hyperbolic Partial Differential Equations
Reaction Diffusion Equations
Deterministic and Stochastic Control Systems
Transport and Population Equations
Volterra Equations
Delay Equations
Stochastic Processes and Dirichlet Forms
Maximal Regularity and Functional Calculi
Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations
Evolution Equations in Mathematical Physics
Elliptic Operators