制作更多近似斜双框对

IF 1.2 3区 数学 Q1 MATHEMATICS
Yun-Zhang Li, Li-Juan Wu
{"title":"制作更多近似斜双框对","authors":"Yun-Zhang Li,&nbsp;Li-Juan Wu","doi":"10.1007/s43034-024-00325-0","DOIUrl":null,"url":null,"abstract":"<div><p>The concept of approximate oblique dual frame was introduced by Díaz, Heineken and Morillas. It is more general than traditional dual frame, oblique dual frame, and approximate dual frame. This paper addresses constructing more approximate oblique dual frame pairs starting from one given oblique dual frame pair. Using “analysis and synthesis operator”, “portrait”, and “gap” perturbation techniques, we present several sufficient conditions for constructing approximate oblique dual frame pairs under the general Hilbert space setting. As an application, we then focus on constructing approximate oblique dual frame pairs in shift-invariant subspaces of <span>\\(L^{2}(\\mathbb R)\\)</span>.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Making more approximate oblique dual frame pairs\",\"authors\":\"Yun-Zhang Li,&nbsp;Li-Juan Wu\",\"doi\":\"10.1007/s43034-024-00325-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The concept of approximate oblique dual frame was introduced by Díaz, Heineken and Morillas. It is more general than traditional dual frame, oblique dual frame, and approximate dual frame. This paper addresses constructing more approximate oblique dual frame pairs starting from one given oblique dual frame pair. Using “analysis and synthesis operator”, “portrait”, and “gap” perturbation techniques, we present several sufficient conditions for constructing approximate oblique dual frame pairs under the general Hilbert space setting. As an application, we then focus on constructing approximate oblique dual frame pairs in shift-invariant subspaces of <span>\\\\(L^{2}(\\\\mathbb R)\\\\)</span>.</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":\"15 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-024-00325-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00325-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

近似斜对偶框架的概念是由 Díaz、Heineken 和 Morillas 提出的。它比传统对偶框架、斜对偶框架和近似对偶框架更为宽泛。本文探讨从一个给定的斜对偶框架对开始,构建更多的近似斜对偶框架对。利用 "分析与合成算子"、"肖像 "和 "间隙 "扰动技术,我们提出了在一般希尔伯特空间环境下构建近似斜对偶框架对的几个充分条件。作为应用,我们将重点放在构建 \(L^{2}(\mathbb R)\) 移位不变子空间中的近似斜对偶框架对上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Making more approximate oblique dual frame pairs

The concept of approximate oblique dual frame was introduced by Díaz, Heineken and Morillas. It is more general than traditional dual frame, oblique dual frame, and approximate dual frame. This paper addresses constructing more approximate oblique dual frame pairs starting from one given oblique dual frame pair. Using “analysis and synthesis operator”, “portrait”, and “gap” perturbation techniques, we present several sufficient conditions for constructing approximate oblique dual frame pairs under the general Hilbert space setting. As an application, we then focus on constructing approximate oblique dual frame pairs in shift-invariant subspaces of \(L^{2}(\mathbb R)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信