作为周期类乘积的交替群 - II

Pub Date : 2024-02-26 DOI:10.1007/s10801-024-01305-2
Harish Kishnani, Rijubrata Kundu, Sumit Chandra Mishra
{"title":"作为周期类乘积的交替群 - II","authors":"Harish Kishnani, Rijubrata Kundu, Sumit Chandra Mishra","doi":"10.1007/s10801-024-01305-2","DOIUrl":null,"url":null,"abstract":"<p>Given integers <span>\\(k,l\\ge 2\\)</span>, where either <i>l</i> is odd or <i>k</i> is even, let <i>n</i>(<i>k</i>, <i>l</i>) denote the largest integer <i>n</i> such that each element of <span>\\(A_n\\)</span> is a product of <i>k</i> many <i>l</i>-cycles. M. Herzog, G. Kaplan and A. Lev conjectured that <span>\\(\\lfloor \\frac{2kl}{3} \\rfloor \\le n(k,l)\\le \\lfloor \\frac{2kl}{3}\\rfloor +1\\)</span> [Herzog et al. in J Combin Theory Ser A, 115:1235-1245 2008]. It is known that the conjecture holds when <span>\\(k=2,3,4\\)</span>. Moreover, it is also true when <span>\\(3\\mid l\\)</span>. In this article, we determine the exact value of <i>n</i>(<i>k</i>, <i>l</i>) when <span>\\(3\\not \\mid l\\)</span> and <span>\\(k\\ge 5\\)</span>. As an immediate consequence, we get that <span>\\(n(k,l)&lt;\\lfloor \\frac{2kl}{3}\\rfloor \\)</span> when <span>\\(k\\ge 5\\)</span> and <span>\\(3\\not \\mid l\\)</span>, which shows that the above conjecture is not true in general. In fact in this case, the difference between the exact value of <i>n</i>(<i>k</i>, <i>l</i>) and the conjectured value grows linearly in terms of <i>k</i>. Our results complete the determination of <i>n</i>(<i>k</i>, <i>l</i>) for all values of <i>k</i> and <i>l</i>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alternating groups as products of cycle classes - II\",\"authors\":\"Harish Kishnani, Rijubrata Kundu, Sumit Chandra Mishra\",\"doi\":\"10.1007/s10801-024-01305-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given integers <span>\\\\(k,l\\\\ge 2\\\\)</span>, where either <i>l</i> is odd or <i>k</i> is even, let <i>n</i>(<i>k</i>, <i>l</i>) denote the largest integer <i>n</i> such that each element of <span>\\\\(A_n\\\\)</span> is a product of <i>k</i> many <i>l</i>-cycles. M. Herzog, G. Kaplan and A. Lev conjectured that <span>\\\\(\\\\lfloor \\\\frac{2kl}{3} \\\\rfloor \\\\le n(k,l)\\\\le \\\\lfloor \\\\frac{2kl}{3}\\\\rfloor +1\\\\)</span> [Herzog et al. in J Combin Theory Ser A, 115:1235-1245 2008]. It is known that the conjecture holds when <span>\\\\(k=2,3,4\\\\)</span>. Moreover, it is also true when <span>\\\\(3\\\\mid l\\\\)</span>. In this article, we determine the exact value of <i>n</i>(<i>k</i>, <i>l</i>) when <span>\\\\(3\\\\not \\\\mid l\\\\)</span> and <span>\\\\(k\\\\ge 5\\\\)</span>. As an immediate consequence, we get that <span>\\\\(n(k,l)&lt;\\\\lfloor \\\\frac{2kl}{3}\\\\rfloor \\\\)</span> when <span>\\\\(k\\\\ge 5\\\\)</span> and <span>\\\\(3\\\\not \\\\mid l\\\\)</span>, which shows that the above conjecture is not true in general. In fact in this case, the difference between the exact value of <i>n</i>(<i>k</i>, <i>l</i>) and the conjectured value grows linearly in terms of <i>k</i>. Our results complete the determination of <i>n</i>(<i>k</i>, <i>l</i>) for all values of <i>k</i> and <i>l</i>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10801-024-01305-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01305-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定整数\(k,l\ge 2\), 其中l为奇数或k为偶数,让n(k, l)表示最大整数n,使得\(A_n\)的每个元素都是k多个l循环的乘积。赫佐格(M. Herzog)、卡普兰(G. Kaplan)和列夫(A. Lev)猜想 \(lfloor \frac{2kl}{3}\n(k,l)\le \lfloor \frac{2kl}{3}\rfloor +1\)[Herzog et al. in J Combin Theory Ser A, 115:1235-1245 2008].众所周知,当 \(k=2,3,4\)时,猜想成立。此外,当 \(3\mid l\) 时猜想也成立。在本文中,我们将确定当(3,3,4)和(k,5)时n(k,l)的精确值。作为一个直接的结果,我们得到了当\(k\ge 5\) 和\(3\not \mid l\) 时的\(n(k,l)<\lfloor \frac{2kl}{3}\rfloor \),这表明上述猜想在一般情况下是不正确的。事实上,在这种情况下,n(k, l)的精确值与猜想值之间的差值是以k为单位线性增长的。我们的结果完成了对所有 k 和 l 值的 n(k,l)的确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Alternating groups as products of cycle classes - II

Given integers \(k,l\ge 2\), where either l is odd or k is even, let n(kl) denote the largest integer n such that each element of \(A_n\) is a product of k many l-cycles. M. Herzog, G. Kaplan and A. Lev conjectured that \(\lfloor \frac{2kl}{3} \rfloor \le n(k,l)\le \lfloor \frac{2kl}{3}\rfloor +1\) [Herzog et al. in J Combin Theory Ser A, 115:1235-1245 2008]. It is known that the conjecture holds when \(k=2,3,4\). Moreover, it is also true when \(3\mid l\). In this article, we determine the exact value of n(kl) when \(3\not \mid l\) and \(k\ge 5\). As an immediate consequence, we get that \(n(k,l)<\lfloor \frac{2kl}{3}\rfloor \) when \(k\ge 5\) and \(3\not \mid l\), which shows that the above conjecture is not true in general. In fact in this case, the difference between the exact value of n(kl) and the conjectured value grows linearly in terms of k. Our results complete the determination of n(kl) for all values of k and l.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信