一类双鞍点问题的一些预处理技术

IF 1.8 3区 数学 Q1 MATHEMATICS
Fariba Balani Bakrani, Luca Bergamaschi, Ángeles Martínez, Masoud Hajarian
{"title":"一类双鞍点问题的一些预处理技术","authors":"Fariba Balani Bakrani, Luca Bergamaschi, Ángeles Martínez, Masoud Hajarian","doi":"10.1002/nla.2551","DOIUrl":null,"url":null,"abstract":"In this paper, we describe and analyze the spectral properties of several exact block preconditioners for a class of double saddle point problems. Among all these, we consider an inexact version of a block triangular preconditioner providing extremely fast convergence of the (F)GMRES method. We develop a spectral analysis of the preconditioned matrix showing that the complex eigenvalues lie in a circle of center <mjx-container aria-label=\"left parenthesis 1 comma 0 right parenthesis\" ctxtmenu_counter=\"0\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-children=\"5\" data-semantic-content=\"0,4\" data-semantic- data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis 1 comma 0 right parenthesis\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"1,2,3\" data-semantic-content=\"2\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"5\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\" rspace=\"3\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/3929c6dd-d320-4d1e-8a5e-27ca95fe5f88/nla2551-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"5\" data-semantic-content=\"0,4\" data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis 1 comma 0 right parenthesis\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"1,2,3\" data-semantic-content=\"2\" data-semantic-parent=\"6\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn><mo data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"5\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\">,</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\">0</mn></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow>$$ \\left(1,0\\right) $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and radius 1, while the real eigenvalues are described in terms of the roots of a third order polynomial with real coefficients. Numerical examples are reported to illustrate the efficiency of inexact versions of the proposed preconditioners, and to verify the theoretical bounds.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some preconditioning techniques for a class of double saddle point problems\",\"authors\":\"Fariba Balani Bakrani, Luca Bergamaschi, Ángeles Martínez, Masoud Hajarian\",\"doi\":\"10.1002/nla.2551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe and analyze the spectral properties of several exact block preconditioners for a class of double saddle point problems. Among all these, we consider an inexact version of a block triangular preconditioner providing extremely fast convergence of the (F)GMRES method. We develop a spectral analysis of the preconditioned matrix showing that the complex eigenvalues lie in a circle of center <mjx-container aria-label=\\\"left parenthesis 1 comma 0 right parenthesis\\\" ctxtmenu_counter=\\\"0\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"5\\\" data-semantic-content=\\\"0,4\\\" data-semantic- data-semantic-role=\\\"leftright\\\" data-semantic-speech=\\\"left parenthesis 1 comma 0 right parenthesis\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"1,2,3\\\" data-semantic-content=\\\"2\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"sequence\\\" data-semantic-type=\\\"punctuated\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\" rspace=\\\"3\\\" style=\\\"margin-left: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/3929c6dd-d320-4d1e-8a5e-27ca95fe5f88/nla2551-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"5\\\" data-semantic-content=\\\"0,4\\\" data-semantic-role=\\\"leftright\\\" data-semantic-speech=\\\"left parenthesis 1 comma 0 right parenthesis\\\" data-semantic-type=\\\"fenced\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">(</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"1,2,3\\\" data-semantic-content=\\\"2\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"sequence\\\" data-semantic-type=\\\"punctuated\\\"><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">1</mn><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\">,</mo><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">0</mn></mrow><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">)</mo></mrow>$$ \\\\left(1,0\\\\right) $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and radius 1, while the real eigenvalues are described in terms of the roots of a third order polynomial with real coefficients. Numerical examples are reported to illustrate the efficiency of inexact versions of the proposed preconditioners, and to verify the theoretical bounds.\",\"PeriodicalId\":49731,\"journal\":{\"name\":\"Numerical Linear Algebra with Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Linear Algebra with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2551\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2551","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们描述并分析了针对一类双鞍点问题的几种精确块预处理的光谱特性。其中,我们考虑了一种非精确版的块三角形预调器,它能使 (F)GMRES 方法极速收敛。我们对预处理矩阵进行了频谱分析,结果表明复特征值位于以 (1,0)$$ \left(1,0\right) $$ 为圆心、以 1 为半径的圆内,而实特征值则用具有实系数的三阶多项式的根来描述。报告中的数值示例说明了所提出的非精确版本预处理器的效率,并验证了理论边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some preconditioning techniques for a class of double saddle point problems
In this paper, we describe and analyze the spectral properties of several exact block preconditioners for a class of double saddle point problems. Among all these, we consider an inexact version of a block triangular preconditioner providing extremely fast convergence of the (F)GMRES method. We develop a spectral analysis of the preconditioned matrix showing that the complex eigenvalues lie in a circle of center and radius 1, while the real eigenvalues are described in terms of the roots of a third order polynomial with real coefficients. Numerical examples are reported to illustrate the efficiency of inexact versions of the proposed preconditioners, and to verify the theoretical bounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
2.30%
发文量
50
审稿时长
12 months
期刊介绍: Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review. Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects. Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信