一类非凸双层平衡问题的近端梯度算法

IF 1 3区 数学 Q1 MATHEMATICS
{"title":"一类非凸双层平衡问题的近端梯度算法","authors":"","doi":"10.1007/s40840-024-01664-w","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, we propose an algorithm for a bilevel problem of solving a monotone equilibrium problem over the solution set of a mixed equilibrium problem involving prox-convex functions in finite dimensional Euclidean space <span> <span>\\(\\mathbb R^n\\)</span> </span>. The proposed algorithm is based on the proximal method for mixed variational inequalities by using proximal operators of prox-convex functions. The convergence of the sequences generated by the proposed algorithm is established. Furthermore, some consequences of the main result are given. Finally, we provide numerical examples to illustrate our algorithm;s convergence and compare it with others. As an application, we apply the proposed algorithm to solve a modified oligopolistic Nash–Cournot equilibrium model. </p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"175 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proximal Subgradient Algorithm for a Class of Nonconvex Bilevel Equilibrium Problems\",\"authors\":\"\",\"doi\":\"10.1007/s40840-024-01664-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this paper, we propose an algorithm for a bilevel problem of solving a monotone equilibrium problem over the solution set of a mixed equilibrium problem involving prox-convex functions in finite dimensional Euclidean space <span> <span>\\\\(\\\\mathbb R^n\\\\)</span> </span>. The proposed algorithm is based on the proximal method for mixed variational inequalities by using proximal operators of prox-convex functions. The convergence of the sequences generated by the proposed algorithm is established. Furthermore, some consequences of the main result are given. Finally, we provide numerical examples to illustrate our algorithm;s convergence and compare it with others. As an application, we apply the proposed algorithm to solve a modified oligopolistic Nash–Cournot equilibrium model. </p>\",\"PeriodicalId\":50718,\"journal\":{\"name\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"volume\":\"175 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40840-024-01664-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01664-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文提出了一种在有限维欧几里得空间 \(\mathbb R^n\) 中涉及近凸函数的混合均衡问题的解集上求解单调均衡问题的双层问题算法。所提出的算法基于近似法,通过使用近似凸函数的近似算子来求解混合变分不等式。所提算法生成的序列的收敛性是确定的。此外,还给出了主要结果的一些后果。最后,我们举例说明了算法的收敛性,并与其他算法进行了比较。作为应用,我们将提出的算法用于求解一个修正的寡头垄断纳什-库诺均衡模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proximal Subgradient Algorithm for a Class of Nonconvex Bilevel Equilibrium Problems

Abstract

In this paper, we propose an algorithm for a bilevel problem of solving a monotone equilibrium problem over the solution set of a mixed equilibrium problem involving prox-convex functions in finite dimensional Euclidean space \(\mathbb R^n\) . The proposed algorithm is based on the proximal method for mixed variational inequalities by using proximal operators of prox-convex functions. The convergence of the sequences generated by the proposed algorithm is established. Furthermore, some consequences of the main result are given. Finally, we provide numerical examples to illustrate our algorithm;s convergence and compare it with others. As an application, we apply the proposed algorithm to solve a modified oligopolistic Nash–Cournot equilibrium model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
176
审稿时长
3 months
期刊介绍: This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信