一类具有总质量控制的分数抛物线反应扩散系统:理论与数值计算

Pub Date : 2024-02-26 DOI:10.1007/s11868-023-00576-w
{"title":"一类具有总质量控制的分数抛物线反应扩散系统:理论与数值计算","authors":"","doi":"10.1007/s11868-023-00576-w","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, we prove global-in-time existence of strong solutions to a class of fractional parabolic reaction–diffusion systems posed in a bounded domain of <span> <span>\\(\\mathbb {R}^N\\)</span> </span>. The nonlinear reactive terms are assumed to satisfy natural structure conditions which provide nonnegativity of the solutions and uniform control of the total mass. The diffusion operators are of type <span> <span>\\(u_i\\mapsto d_i(-\\Delta )^s u_i\\)</span> </span> where <span> <span>\\(0&lt;s&lt;1\\)</span> </span>. Global existence of strong solutions is proved under the assumption that the nonlinearities are at most of polynomial growth. Our results extend previous results obtained when the diffusion operators are of type <span> <span>\\(u_i\\mapsto -d_i\\Delta u_i\\)</span> </span>. On the other hand, we use numerical simulations to examine the global existence of solutions to systems with exponentially growing right-hand sides, which remains so far an open theoretical question even in the case <span> <span>\\(s=1\\)</span> </span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A class of fractional parabolic reaction–diffusion systems with control of total mass: theory and numerics\",\"authors\":\"\",\"doi\":\"10.1007/s11868-023-00576-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this paper, we prove global-in-time existence of strong solutions to a class of fractional parabolic reaction–diffusion systems posed in a bounded domain of <span> <span>\\\\(\\\\mathbb {R}^N\\\\)</span> </span>. The nonlinear reactive terms are assumed to satisfy natural structure conditions which provide nonnegativity of the solutions and uniform control of the total mass. The diffusion operators are of type <span> <span>\\\\(u_i\\\\mapsto d_i(-\\\\Delta )^s u_i\\\\)</span> </span> where <span> <span>\\\\(0&lt;s&lt;1\\\\)</span> </span>. Global existence of strong solutions is proved under the assumption that the nonlinearities are at most of polynomial growth. Our results extend previous results obtained when the diffusion operators are of type <span> <span>\\\\(u_i\\\\mapsto -d_i\\\\Delta u_i\\\\)</span> </span>. On the other hand, we use numerical simulations to examine the global existence of solutions to systems with exponentially growing right-hand sides, which remains so far an open theoretical question even in the case <span> <span>\\\\(s=1\\\\)</span> </span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11868-023-00576-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-023-00576-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在本文中,我们证明了一类分数抛物面反应扩散系统在 \(\mathbb {R}^N\) 有界域中的强解的全局实时存在性。假定非线性反应项满足自然结构条件,这些条件提供了解的非负性和总质量的均匀控制。扩散算子为 \(u_i\mapsto d_i(-\Delta )^s u_i\) 类型,其中 \(0<s<1\) 。在非线性最多为多项式增长的假设下,证明了强解的全局存在性。我们的结果扩展了之前在扩散算子为 \(u_i\mapsto -d_i\Delta u_i\) 类型时获得的结果。另一方面,我们利用数值模拟研究了具有指数增长右边的系统解的全局存在性,即使在 \(s=1\) 的情况下,这迄今为止仍然是一个开放的理论问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A class of fractional parabolic reaction–diffusion systems with control of total mass: theory and numerics

Abstract

In this paper, we prove global-in-time existence of strong solutions to a class of fractional parabolic reaction–diffusion systems posed in a bounded domain of \(\mathbb {R}^N\) . The nonlinear reactive terms are assumed to satisfy natural structure conditions which provide nonnegativity of the solutions and uniform control of the total mass. The diffusion operators are of type \(u_i\mapsto d_i(-\Delta )^s u_i\) where \(0<s<1\) . Global existence of strong solutions is proved under the assumption that the nonlinearities are at most of polynomial growth. Our results extend previous results obtained when the diffusion operators are of type \(u_i\mapsto -d_i\Delta u_i\) . On the other hand, we use numerical simulations to examine the global existence of solutions to systems with exponentially growing right-hand sides, which remains so far an open theoretical question even in the case \(s=1\) .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信