{"title":"空间曲率对脉冲星磁场惯性矩的影响","authors":"A. A. Matevosyan, D. P. Barsukov","doi":"10.1134/S1063773723100043","DOIUrl":null,"url":null,"abstract":"<p>We consider the influence of space curvature in the Schwarzschild metric on the contribution of the magnetic field outside the neutron star to the moment of inertia of a radio pulsar. Our consideration is restricted only to the simplest configuration of the magnetic field, when it can be described by only one harmonic. We show that at a fixed magnetic field strength on the stellar surface the influence of space curvature reduces the contribution of the magnetic field outside the star to the departure of the inertia tensor from the spherical one several-fold.</p>","PeriodicalId":55443,"journal":{"name":"Astronomy Letters-A Journal of Astronomy and Space Astrophysics","volume":"49 10","pages":"560 - 566"},"PeriodicalIF":1.1000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Space Curvature on the Moment of Inertia of a Pulsar Magnetic Field\",\"authors\":\"A. A. Matevosyan, D. P. Barsukov\",\"doi\":\"10.1134/S1063773723100043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the influence of space curvature in the Schwarzschild metric on the contribution of the magnetic field outside the neutron star to the moment of inertia of a radio pulsar. Our consideration is restricted only to the simplest configuration of the magnetic field, when it can be described by only one harmonic. We show that at a fixed magnetic field strength on the stellar surface the influence of space curvature reduces the contribution of the magnetic field outside the star to the departure of the inertia tensor from the spherical one several-fold.</p>\",\"PeriodicalId\":55443,\"journal\":{\"name\":\"Astronomy Letters-A Journal of Astronomy and Space Astrophysics\",\"volume\":\"49 10\",\"pages\":\"560 - 566\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy Letters-A Journal of Astronomy and Space Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063773723100043\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy Letters-A Journal of Astronomy and Space Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063773723100043","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Influence of Space Curvature on the Moment of Inertia of a Pulsar Magnetic Field
We consider the influence of space curvature in the Schwarzschild metric on the contribution of the magnetic field outside the neutron star to the moment of inertia of a radio pulsar. Our consideration is restricted only to the simplest configuration of the magnetic field, when it can be described by only one harmonic. We show that at a fixed magnetic field strength on the stellar surface the influence of space curvature reduces the contribution of the magnetic field outside the star to the departure of the inertia tensor from the spherical one several-fold.
期刊介绍:
Astronomy Letters is an international peer reviewed journal that publishes the results of original research on all aspects of modern astronomy and astrophysics including high energy astrophysics, cosmology, space astronomy, theoretical astrophysics, radio astronomy, extragalactic astronomy, stellar astronomy, and investigation of the Solar system.