{"title":"k 顶点临界 ( $$P_5$$ , $$C_5$$ )- 自由图的无穷族","authors":"Ben Cameron, Chính Hoàng","doi":"10.1007/s00373-024-02756-x","DOIUrl":null,"url":null,"abstract":"<p>A graph is <i>k</i>-vertex-critical if <span>\\(\\chi (G)=k\\)</span> but <span>\\(\\chi (G-v)<k\\)</span> for all <span>\\(v\\in V(G)\\)</span>. We construct new infinite families of <i>k</i>-vertex-critical <span>\\((P_5,C_5)\\)</span>-free graphs for all <span>\\(k\\ge 6\\)</span>. Our construction generalises known constructions for 4-vertex-critical <span>\\(P_7\\)</span>-free graphs and 5-vertex-critical <span>\\(P_5\\)</span>-free graphs and is in contrast to the fact that there are only finitely many 5-vertex-critical <span>\\((P_5,C_5)\\)</span>-free graphs. In fact, our construction is even more well-structured, being <span>\\((2P_2,K_3+P_1,C_5)\\)</span>-free.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinite Families of k-Vertex-Critical ( $$P_5$$ , $$C_5$$ )-Free Graphs\",\"authors\":\"Ben Cameron, Chính Hoàng\",\"doi\":\"10.1007/s00373-024-02756-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A graph is <i>k</i>-vertex-critical if <span>\\\\(\\\\chi (G)=k\\\\)</span> but <span>\\\\(\\\\chi (G-v)<k\\\\)</span> for all <span>\\\\(v\\\\in V(G)\\\\)</span>. We construct new infinite families of <i>k</i>-vertex-critical <span>\\\\((P_5,C_5)\\\\)</span>-free graphs for all <span>\\\\(k\\\\ge 6\\\\)</span>. Our construction generalises known constructions for 4-vertex-critical <span>\\\\(P_7\\\\)</span>-free graphs and 5-vertex-critical <span>\\\\(P_5\\\\)</span>-free graphs and is in contrast to the fact that there are only finitely many 5-vertex-critical <span>\\\\((P_5,C_5)\\\\)</span>-free graphs. In fact, our construction is even more well-structured, being <span>\\\\((2P_2,K_3+P_1,C_5)\\\\)</span>-free.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02756-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02756-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Infinite Families of k-Vertex-Critical ( $$P_5$$ , $$C_5$$ )-Free Graphs
A graph is k-vertex-critical if \(\chi (G)=k\) but \(\chi (G-v)<k\) for all \(v\in V(G)\). We construct new infinite families of k-vertex-critical \((P_5,C_5)\)-free graphs for all \(k\ge 6\). Our construction generalises known constructions for 4-vertex-critical \(P_7\)-free graphs and 5-vertex-critical \(P_5\)-free graphs and is in contrast to the fact that there are only finitely many 5-vertex-critical \((P_5,C_5)\)-free graphs. In fact, our construction is even more well-structured, being \((2P_2,K_3+P_1,C_5)\)-free.