{"title":"拉姆齐数字和图形参数","authors":"Vadim Lozin","doi":"10.1007/s00373-024-02755-y","DOIUrl":null,"url":null,"abstract":"<p>According to Ramsey’s Theorem, for any natural <i>p</i> and <i>q</i> there is a minimum number <i>R</i>(<i>p</i>, <i>q</i>) such that every graph with at least <i>R</i>(<i>p</i>, <i>q</i>) vertices has either a clique of size <i>p</i> or an independent set of size <i>q</i>. In the present paper, we study Ramsey numbers <i>R</i>(<i>p</i>, <i>q</i>) for graphs in special classes. It is known that for graphs of bounded co-chromatic number Ramsey numbers are upper-bounded by a linear function of <i>p</i> and <i>q</i>. However, the exact values of <i>R</i>(<i>p</i>, <i>q</i>) are known only for classes of graphs of co-chromatic number at most 2. In this paper, we determine the exact values of Ramsey numbers for classes of graphs of co-chromatic number at most 3. It is also known that for classes of graphs of unbounded splitness the value of <i>R</i>(<i>p</i>, <i>q</i>) is lower-bounded by <span>\\((p-1)(q-1)+1\\)</span>. This lower bound coincides with the upper bound for perfect graphs and for all their subclasses of unbounded splitness. We call a class Ramsey-perfect if there is a constant <i>c</i> such that <span>\\(R(p,q)=(p-1)(q-1)+1\\)</span> for all <span>\\(p,q\\ge c\\)</span> in this class. In the present paper, we identify a number of Ramsey-perfect classes which are not subclasses of perfect graphs.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"183 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ramsey Numbers and Graph Parameters\",\"authors\":\"Vadim Lozin\",\"doi\":\"10.1007/s00373-024-02755-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>According to Ramsey’s Theorem, for any natural <i>p</i> and <i>q</i> there is a minimum number <i>R</i>(<i>p</i>, <i>q</i>) such that every graph with at least <i>R</i>(<i>p</i>, <i>q</i>) vertices has either a clique of size <i>p</i> or an independent set of size <i>q</i>. In the present paper, we study Ramsey numbers <i>R</i>(<i>p</i>, <i>q</i>) for graphs in special classes. It is known that for graphs of bounded co-chromatic number Ramsey numbers are upper-bounded by a linear function of <i>p</i> and <i>q</i>. However, the exact values of <i>R</i>(<i>p</i>, <i>q</i>) are known only for classes of graphs of co-chromatic number at most 2. In this paper, we determine the exact values of Ramsey numbers for classes of graphs of co-chromatic number at most 3. It is also known that for classes of graphs of unbounded splitness the value of <i>R</i>(<i>p</i>, <i>q</i>) is lower-bounded by <span>\\\\((p-1)(q-1)+1\\\\)</span>. This lower bound coincides with the upper bound for perfect graphs and for all their subclasses of unbounded splitness. We call a class Ramsey-perfect if there is a constant <i>c</i> such that <span>\\\\(R(p,q)=(p-1)(q-1)+1\\\\)</span> for all <span>\\\\(p,q\\\\ge c\\\\)</span> in this class. In the present paper, we identify a number of Ramsey-perfect classes which are not subclasses of perfect graphs.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"183 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02755-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02755-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
根据拉姆齐定理,对于任意自然数 p 和 q,都有一个最小数 R(p,q),使得每个至少有 R(p,q) 个顶点的图都有一个大小为 p 的簇或一个大小为 q 的独立集。众所周知,对于同色数有界的图,拉姆齐数是由 p 和 q 的线性函数上界的。然而,R(p, q) 的精确值只适用于同色数最多为 2 的图类。本文中,我们确定了共色数最多为 3 的图类的拉姆齐数的精确值。我们还知道,对于分裂度无约束的图类,R(p, q) 的值下界为 \((p-1)(q-1)+1/\)。这个下界与完美图及其所有无界分割性子类的上界重合。如果存在一个常数 c,使得该类中的所有 \(R(p,q)=(p-1)(q-1)+1\) 都是 Ramsey-perfect,我们就称该类为 Ramsey-perfect。在本文中,我们确定了一些拉姆齐完美类,它们并不是完美图的子类。
According to Ramsey’s Theorem, for any natural p and q there is a minimum number R(p, q) such that every graph with at least R(p, q) vertices has either a clique of size p or an independent set of size q. In the present paper, we study Ramsey numbers R(p, q) for graphs in special classes. It is known that for graphs of bounded co-chromatic number Ramsey numbers are upper-bounded by a linear function of p and q. However, the exact values of R(p, q) are known only for classes of graphs of co-chromatic number at most 2. In this paper, we determine the exact values of Ramsey numbers for classes of graphs of co-chromatic number at most 3. It is also known that for classes of graphs of unbounded splitness the value of R(p, q) is lower-bounded by \((p-1)(q-1)+1\). This lower bound coincides with the upper bound for perfect graphs and for all their subclasses of unbounded splitness. We call a class Ramsey-perfect if there is a constant c such that \(R(p,q)=(p-1)(q-1)+1\) for all \(p,q\ge c\) in this class. In the present paper, we identify a number of Ramsey-perfect classes which are not subclasses of perfect graphs.
期刊介绍:
Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.