Ronen Liberman, Christian R. Voolstra, Benjamin C. C. Hume, Yehuda Benayahu
{"title":"幼年章鱼在不同深度获得相似的藻类共生组合","authors":"Ronen Liberman, Christian R. Voolstra, Benjamin C. C. Hume, Yehuda Benayahu","doi":"10.1007/s00338-024-02470-3","DOIUrl":null,"url":null,"abstract":"<p>Establishment of the coral–algal symbiosis begins during early ontogeny when juveniles acquire a mix of algae from their environment that often differs from the adults’ algal assemblages. Despite the importance of the type of Symbiodiniaceae to this symbiosis, it is largely unknown how coral host identity and environment affect symbiosis establishment and is affected by the genetic composition of the symbionts. Here, we reciprocally transplanted planulae of the octocoral <i>Rhytisma fulvum</i> (Forskål, 1775) across depths and monitored the algal assemblages in the developing juveniles for 11 months. We then compared these to adult assemblages using ITS2 metabarcoding. Juveniles were consistently dominated by <i>Symbiodinium</i>, in addition to multiple <i>Cladocopium</i> species, which shifted in dominance with the juvenile age but maintained high similarity across depths. The type of Symbiodiniaceae environmentally available thus likely contributes to the algal symbionts that are initially acquired, while host identity may play a significant role in selecting for symbionts that are maintained during juvenile development.</p>","PeriodicalId":10821,"journal":{"name":"Coral Reefs","volume":"68 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Juvenile octocorals acquire similar algal symbiont assemblages across depths\",\"authors\":\"Ronen Liberman, Christian R. Voolstra, Benjamin C. C. Hume, Yehuda Benayahu\",\"doi\":\"10.1007/s00338-024-02470-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Establishment of the coral–algal symbiosis begins during early ontogeny when juveniles acquire a mix of algae from their environment that often differs from the adults’ algal assemblages. Despite the importance of the type of Symbiodiniaceae to this symbiosis, it is largely unknown how coral host identity and environment affect symbiosis establishment and is affected by the genetic composition of the symbionts. Here, we reciprocally transplanted planulae of the octocoral <i>Rhytisma fulvum</i> (Forskål, 1775) across depths and monitored the algal assemblages in the developing juveniles for 11 months. We then compared these to adult assemblages using ITS2 metabarcoding. Juveniles were consistently dominated by <i>Symbiodinium</i>, in addition to multiple <i>Cladocopium</i> species, which shifted in dominance with the juvenile age but maintained high similarity across depths. The type of Symbiodiniaceae environmentally available thus likely contributes to the algal symbionts that are initially acquired, while host identity may play a significant role in selecting for symbionts that are maintained during juvenile development.</p>\",\"PeriodicalId\":10821,\"journal\":{\"name\":\"Coral Reefs\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coral Reefs\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00338-024-02470-3\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coral Reefs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00338-024-02470-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Juvenile octocorals acquire similar algal symbiont assemblages across depths
Establishment of the coral–algal symbiosis begins during early ontogeny when juveniles acquire a mix of algae from their environment that often differs from the adults’ algal assemblages. Despite the importance of the type of Symbiodiniaceae to this symbiosis, it is largely unknown how coral host identity and environment affect symbiosis establishment and is affected by the genetic composition of the symbionts. Here, we reciprocally transplanted planulae of the octocoral Rhytisma fulvum (Forskål, 1775) across depths and monitored the algal assemblages in the developing juveniles for 11 months. We then compared these to adult assemblages using ITS2 metabarcoding. Juveniles were consistently dominated by Symbiodinium, in addition to multiple Cladocopium species, which shifted in dominance with the juvenile age but maintained high similarity across depths. The type of Symbiodiniaceae environmentally available thus likely contributes to the algal symbionts that are initially acquired, while host identity may play a significant role in selecting for symbionts that are maintained during juvenile development.
期刊介绍:
Coral Reefs, the Journal of the International Coral Reef Society, presents multidisciplinary literature across the broad fields of reef studies, publishing analytical and theoretical papers on both modern and ancient reefs. These encourage the search for theories about reef structure and dynamics, and the use of experimentation, modeling, quantification and the applied sciences.
Coverage includes such subject areas as population dynamics; community ecology of reef organisms; energy and nutrient flows; biogeochemical cycles; physiology of calcification; reef responses to natural and anthropogenic influences; stress markers in reef organisms; behavioural ecology; sedimentology; diagenesis; reef structure and morphology; evolutionary ecology of the reef biota; palaeoceanography of coral reefs and coral islands; reef management and its underlying disciplines; molecular biology and genetics of coral; aetiology of disease in reef-related organisms; reef responses to global change, and more.