不同工作条件下用于滚动轴承故障诊断的 Wasserstein Distance- EEMD 增强型多头图注意网络

Xingbing Wang, Yunfeng Yao, Chen Gao
{"title":"不同工作条件下用于滚动轴承故障诊断的 Wasserstein Distance- EEMD 增强型多头图注意网络","authors":"Xingbing Wang, Yunfeng Yao, Chen Gao","doi":"10.17531/ein/184037","DOIUrl":null,"url":null,"abstract":"Traditional fault diagnosis models often overlook the interconnections between segments of vibration data, resulting in the loss of critical feature information. Therefore, an efficient fault diagnosis model tailored for rolling bearings is proposed in this paper. The 1D vibration signals are first preprocessed using ensemble empirical mode decomposition (EEMD) to generate multiple intrinsic mode functions (IMF) as individual nodes. The percentage distance between each node is calculated using the Wasserstein distance (WD) to capture the relationships between nodes and use it as the edge weights to construct a node graph. An improved multi-head graph attention network (MGAT) model is established to extract features and perform classification on the node graph. This MGAT model effectively utilizes the relationships between nodes and enhances the accuracy of fault diagnosis. The experimental results demonstrate that the proposed method achieves higher accuracy compared to similar models while requiring less processing time.","PeriodicalId":335030,"journal":{"name":"Eksploatacja i Niezawodność – Maintenance and Reliability","volume":"6 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wasserstein Distance- EEMD Enhanced Multi-Head Graph Attention Network for Rolling Bearing Fault Diagnosis Under Different Working Conditions\",\"authors\":\"Xingbing Wang, Yunfeng Yao, Chen Gao\",\"doi\":\"10.17531/ein/184037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional fault diagnosis models often overlook the interconnections between segments of vibration data, resulting in the loss of critical feature information. Therefore, an efficient fault diagnosis model tailored for rolling bearings is proposed in this paper. The 1D vibration signals are first preprocessed using ensemble empirical mode decomposition (EEMD) to generate multiple intrinsic mode functions (IMF) as individual nodes. The percentage distance between each node is calculated using the Wasserstein distance (WD) to capture the relationships between nodes and use it as the edge weights to construct a node graph. An improved multi-head graph attention network (MGAT) model is established to extract features and perform classification on the node graph. This MGAT model effectively utilizes the relationships between nodes and enhances the accuracy of fault diagnosis. The experimental results demonstrate that the proposed method achieves higher accuracy compared to similar models while requiring less processing time.\",\"PeriodicalId\":335030,\"journal\":{\"name\":\"Eksploatacja i Niezawodność – Maintenance and Reliability\",\"volume\":\"6 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eksploatacja i Niezawodność – Maintenance and Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17531/ein/184037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eksploatacja i Niezawodność – Maintenance and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17531/ein/184037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的故障诊断模型往往会忽略振动数据片段之间的相互联系,从而导致关键特征信息的丢失。因此,本文提出了一种针对滚动轴承的高效故障诊断模型。首先使用集合经验模态分解(EEMD)对一维振动信号进行预处理,生成作为单个节点的多个本征模态函数(IMF)。使用 Wasserstein 距离(WD)计算每个节点之间的百分比距离,以捕捉节点之间的关系,并将其用作边权重来构建节点图。我们建立了一个改进的多头图注意网络(MGAT)模型,以提取特征并对节点图进行分类。该 MGAT 模型有效利用了节点之间的关系,提高了故障诊断的准确性。实验结果表明,与同类模型相比,所提出的方法能获得更高的准确率,同时所需的处理时间更短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wasserstein Distance- EEMD Enhanced Multi-Head Graph Attention Network for Rolling Bearing Fault Diagnosis Under Different Working Conditions
Traditional fault diagnosis models often overlook the interconnections between segments of vibration data, resulting in the loss of critical feature information. Therefore, an efficient fault diagnosis model tailored for rolling bearings is proposed in this paper. The 1D vibration signals are first preprocessed using ensemble empirical mode decomposition (EEMD) to generate multiple intrinsic mode functions (IMF) as individual nodes. The percentage distance between each node is calculated using the Wasserstein distance (WD) to capture the relationships between nodes and use it as the edge weights to construct a node graph. An improved multi-head graph attention network (MGAT) model is established to extract features and perform classification on the node graph. This MGAT model effectively utilizes the relationships between nodes and enhances the accuracy of fault diagnosis. The experimental results demonstrate that the proposed method achieves higher accuracy compared to similar models while requiring less processing time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信