从项目工作量和静态代码指标中预测可解释的软件缺陷

Susmita Haldar, L. F. Capretz
{"title":"从项目工作量和静态代码指标中预测可解释的软件缺陷","authors":"Susmita Haldar, L. F. Capretz","doi":"10.3390/computers13020052","DOIUrl":null,"url":null,"abstract":"Software defect prediction models enable test managers to predict defect-prone modules and assist with delivering quality products. A test manager would be willing to identify the attributes that can influence defect prediction and should be able to trust the model outcomes. The objective of this research is to create software defect prediction models with a focus on interpretability. Additionally, it aims to investigate the impact of size, complexity, and other source code metrics on the prediction of software defects. This research also assesses the reliability of cross-project defect prediction. Well-known machine learning techniques, such as support vector machines, k-nearest neighbors, random forest classifiers, and artificial neural networks, were applied to publicly available PROMISE datasets. The interpretability of this approach was demonstrated by SHapley Additive exPlanations (SHAP) and local interpretable model-agnostic explanations (LIME) techniques. The developed interpretable software defect prediction models showed reliability on independent and cross-project data. Finally, the results demonstrate that static code metrics can contribute to the defect prediction models, and the inclusion of explainability assists in establishing trust in the developed models.","PeriodicalId":503381,"journal":{"name":"Computers","volume":"33 29","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpretable Software Defect Prediction from Project Effort and Static Code Metrics\",\"authors\":\"Susmita Haldar, L. F. Capretz\",\"doi\":\"10.3390/computers13020052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software defect prediction models enable test managers to predict defect-prone modules and assist with delivering quality products. A test manager would be willing to identify the attributes that can influence defect prediction and should be able to trust the model outcomes. The objective of this research is to create software defect prediction models with a focus on interpretability. Additionally, it aims to investigate the impact of size, complexity, and other source code metrics on the prediction of software defects. This research also assesses the reliability of cross-project defect prediction. Well-known machine learning techniques, such as support vector machines, k-nearest neighbors, random forest classifiers, and artificial neural networks, were applied to publicly available PROMISE datasets. The interpretability of this approach was demonstrated by SHapley Additive exPlanations (SHAP) and local interpretable model-agnostic explanations (LIME) techniques. The developed interpretable software defect prediction models showed reliability on independent and cross-project data. Finally, the results demonstrate that static code metrics can contribute to the defect prediction models, and the inclusion of explainability assists in establishing trust in the developed models.\",\"PeriodicalId\":503381,\"journal\":{\"name\":\"Computers\",\"volume\":\"33 29\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computers13020052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computers13020052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

软件缺陷预测模型使测试经理能够预测易出现缺陷的模块,并协助交付优质产品。测试经理愿意识别可能影响缺陷预测的属性,并且应该能够信任模型的结果。本研究的目标是创建软件缺陷预测模型,重点关注模型的可解释性。此外,它还旨在研究大小、复杂性和其他源代码指标对软件缺陷预测的影响。这项研究还评估了跨项目缺陷预测的可靠性。支持向量机、k-近邻、随机森林分类器和人工神经网络等著名的机器学习技术被应用于公开的 PROMISE 数据集。这种方法的可解释性通过SHAPLE Additive exPlanations(SHAP)和本地可解释模型停滞解释(LIME)技术得到了证明。所开发的可解释软件缺陷预测模型在独立和跨项目数据上显示出了可靠性。最后,研究结果表明,静态代码度量可为缺陷预测模型做出贡献,而包含可解释性则有助于建立对所开发模型的信任。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpretable Software Defect Prediction from Project Effort and Static Code Metrics
Software defect prediction models enable test managers to predict defect-prone modules and assist with delivering quality products. A test manager would be willing to identify the attributes that can influence defect prediction and should be able to trust the model outcomes. The objective of this research is to create software defect prediction models with a focus on interpretability. Additionally, it aims to investigate the impact of size, complexity, and other source code metrics on the prediction of software defects. This research also assesses the reliability of cross-project defect prediction. Well-known machine learning techniques, such as support vector machines, k-nearest neighbors, random forest classifiers, and artificial neural networks, were applied to publicly available PROMISE datasets. The interpretability of this approach was demonstrated by SHapley Additive exPlanations (SHAP) and local interpretable model-agnostic explanations (LIME) techniques. The developed interpretable software defect prediction models showed reliability on independent and cross-project data. Finally, the results demonstrate that static code metrics can contribute to the defect prediction models, and the inclusion of explainability assists in establishing trust in the developed models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信