{"title":"激光纹理加工对复合涂层硬质合金球头铣刀铣削钛合金性能的影响","authors":"Xin Tong, Shoumeng Wang","doi":"10.1177/09544054241229496","DOIUrl":null,"url":null,"abstract":"To explore the strengthening mechanism of the laser texturing process on the surface of composite coating (AlCrN/AlTiSiN) cemented carbide and improve the application rate of laser texturing process in the field of tool cutting. Firstly, the influence of laser texturing process on the surface properties of composite coated cemented carbide was compared and analyzed. Secondly, a test platform for milling titanium alloy with composite coated cemented carbide ball-end milling cutters with different meso-geometry features parameters (blunt round edge radius and micro-texture distance from cutting edge) was built. Finally, the influence analysis and the optimization of geometric characteristic parameters were carried out with milling force, tool wear and workpiece surface roughness as dependent variables. It is concluded that the laser texturing process can significantly improve the phase structure of the composite coating and improve the quality of the coating. The influence of meso-geometry features on milling force, tool wear, and workpiece surface roughness and the parameter optimization of a single dependent variable are obtained by the milling test. Based on the genetic algorithm, the optimal meso-geometry features parameters of the carbide ball-end milling cutter are obtained, that is, the blunt round edge radius is 20.15 μm, and the micro-texture distance from cutting edge is 119.463 μm. It provides a practical basis for the application of laser-textured coating technology in the field of cutting tools.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of laser texturing process on properties of composite coated cemented carbide ball-end milling cutter milling titanium alloy\",\"authors\":\"Xin Tong, Shoumeng Wang\",\"doi\":\"10.1177/09544054241229496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To explore the strengthening mechanism of the laser texturing process on the surface of composite coating (AlCrN/AlTiSiN) cemented carbide and improve the application rate of laser texturing process in the field of tool cutting. Firstly, the influence of laser texturing process on the surface properties of composite coated cemented carbide was compared and analyzed. Secondly, a test platform for milling titanium alloy with composite coated cemented carbide ball-end milling cutters with different meso-geometry features parameters (blunt round edge radius and micro-texture distance from cutting edge) was built. Finally, the influence analysis and the optimization of geometric characteristic parameters were carried out with milling force, tool wear and workpiece surface roughness as dependent variables. It is concluded that the laser texturing process can significantly improve the phase structure of the composite coating and improve the quality of the coating. The influence of meso-geometry features on milling force, tool wear, and workpiece surface roughness and the parameter optimization of a single dependent variable are obtained by the milling test. Based on the genetic algorithm, the optimal meso-geometry features parameters of the carbide ball-end milling cutter are obtained, that is, the blunt round edge radius is 20.15 μm, and the micro-texture distance from cutting edge is 119.463 μm. It provides a practical basis for the application of laser-textured coating technology in the field of cutting tools.\",\"PeriodicalId\":20663,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544054241229496\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544054241229496","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Effect of laser texturing process on properties of composite coated cemented carbide ball-end milling cutter milling titanium alloy
To explore the strengthening mechanism of the laser texturing process on the surface of composite coating (AlCrN/AlTiSiN) cemented carbide and improve the application rate of laser texturing process in the field of tool cutting. Firstly, the influence of laser texturing process on the surface properties of composite coated cemented carbide was compared and analyzed. Secondly, a test platform for milling titanium alloy with composite coated cemented carbide ball-end milling cutters with different meso-geometry features parameters (blunt round edge radius and micro-texture distance from cutting edge) was built. Finally, the influence analysis and the optimization of geometric characteristic parameters were carried out with milling force, tool wear and workpiece surface roughness as dependent variables. It is concluded that the laser texturing process can significantly improve the phase structure of the composite coating and improve the quality of the coating. The influence of meso-geometry features on milling force, tool wear, and workpiece surface roughness and the parameter optimization of a single dependent variable are obtained by the milling test. Based on the genetic algorithm, the optimal meso-geometry features parameters of the carbide ball-end milling cutter are obtained, that is, the blunt round edge radius is 20.15 μm, and the micro-texture distance from cutting edge is 119.463 μm. It provides a practical basis for the application of laser-textured coating technology in the field of cutting tools.
期刊介绍:
Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed.
Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing.
Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.