气候风险与商品回报率和波动率的可预测性:来自 750 多年数据的证据

Jacobus Nel, Rangan Gupta, M. Wohar, Christian Pierdzioch
{"title":"气候风险与商品回报率和波动率的可预测性:来自 750 多年数据的证据","authors":"Jacobus Nel, Rangan Gupta, M. Wohar, Christian Pierdzioch","doi":"10.1142/s2010007824500039","DOIUrl":null,"url":null,"abstract":"We analyze whether metrics of climate risks, as captured primarily by changes in temperature anomaly and its stochastic volatility, can predict returns and volatility of 25 commodities, covering the overall historical period of 1258 to 2021. To this end, we apply a higher-order nonparametric causality-in-quantiles test to not only uncover potential predictability in the entire conditional distribution of commodity returns and volatility, but also to account for nonlinearity and structural breaks which exist between commodity returns and the metrics of climate risks. We find that, unlike in the misspecified linear Granger causality tests, climate risks do predict commodity returns and volatility, though the impact on the latter is stronger, in terms of the coverage of the conditional distribution. Insights from our findings can benefit academics, investors, and policymakers in their decision-making.","PeriodicalId":502585,"journal":{"name":"Climate Change Economics","volume":"48 31","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Climate Risks and Predictability of Commodity Returns and Volatility: Evidence from Over 750 Years of Data\",\"authors\":\"Jacobus Nel, Rangan Gupta, M. Wohar, Christian Pierdzioch\",\"doi\":\"10.1142/s2010007824500039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze whether metrics of climate risks, as captured primarily by changes in temperature anomaly and its stochastic volatility, can predict returns and volatility of 25 commodities, covering the overall historical period of 1258 to 2021. To this end, we apply a higher-order nonparametric causality-in-quantiles test to not only uncover potential predictability in the entire conditional distribution of commodity returns and volatility, but also to account for nonlinearity and structural breaks which exist between commodity returns and the metrics of climate risks. We find that, unlike in the misspecified linear Granger causality tests, climate risks do predict commodity returns and volatility, though the impact on the latter is stronger, in terms of the coverage of the conditional distribution. Insights from our findings can benefit academics, investors, and policymakers in their decision-making.\",\"PeriodicalId\":502585,\"journal\":{\"name\":\"Climate Change Economics\",\"volume\":\"48 31\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate Change Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010007824500039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Change Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2010007824500039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们分析了主要由气温异常变化及其随机波动性所反映的气候风险度量是否可以预测25种商品的收益和波动性,涵盖1258年至2021年的整个历史时期。为此,我们采用了一种高阶非参数因果关系量化检验,不仅揭示了商品回报率和波动率整个条件分布的潜在可预测性,还考虑了商品回报率和气候风险指标之间存在的非线性和结构性断裂。我们发现,与失当的线性格兰杰因果检验不同,气候风险确实可以预测商品收益率和波动率,不过就条件分布的覆盖范围而言,对后者的影响更大。我们的研究结果可以帮助学者、投资者和决策者做出决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Climate Risks and Predictability of Commodity Returns and Volatility: Evidence from Over 750 Years of Data
We analyze whether metrics of climate risks, as captured primarily by changes in temperature anomaly and its stochastic volatility, can predict returns and volatility of 25 commodities, covering the overall historical period of 1258 to 2021. To this end, we apply a higher-order nonparametric causality-in-quantiles test to not only uncover potential predictability in the entire conditional distribution of commodity returns and volatility, but also to account for nonlinearity and structural breaks which exist between commodity returns and the metrics of climate risks. We find that, unlike in the misspecified linear Granger causality tests, climate risks do predict commodity returns and volatility, though the impact on the latter is stronger, in terms of the coverage of the conditional distribution. Insights from our findings can benefit academics, investors, and policymakers in their decision-making.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信