E. Hodille, Blanche Pavec, J. Denis, Axel Dunand, Yves Ferro, Marco Minissale, T. Angot, Christian Grisolia, R. Bisson
{"title":"氧气覆盖的 W(110) 表面的氘吸收、解吸和溅射","authors":"E. Hodille, Blanche Pavec, J. Denis, Axel Dunand, Yves Ferro, Marco Minissale, T. Angot, Christian Grisolia, R. Bisson","doi":"10.1088/1741-4326/ad2a29","DOIUrl":null,"url":null,"abstract":"\n Rate equation modelling is performed to simulate D2 and D2+D2\n + exposure of the W(110) surface with varying coverage of oxygen atoms (O) from the clean surface up to 0.75 monolayer of O. Density functional Theory (DFT) calculated energetics are used as inputs for the surface processes and desorption energies are optimized to best reproduce the thermal desorption spectrometry (TDS) experiments obtained for D2 exposure. For the clean surface, the optimized desorption energies (1.10 eV to 1.40 eV) are below the DFT ones (1.30 eV to 1.50 eV). For the O covered surface, the main desorption peak is reproduced with desorption energies of 1.1 eV and 1.0 eV for 0.50 and 0.75 monolayer of O respectively. This is slightly higher than the DFT predicted desorption energies. In order to simulate satisfactorily the total retention botained experimentally for D2+D2\n + exposure, a sputtering process needs to be added to the model, describing the sputtering of adsorbed species (D atoms) by the incident D ions. The impact of the sputtering process on the shape of the TDS spectra, on the total retention and on the recycling of D from the wall is discussed. In order to better characterize the sputtering process, especially its products and yields, atomistic calculations such as molecular dynamics are suggested as a next step for this study.","PeriodicalId":503481,"journal":{"name":"Nuclear Fusion","volume":"30 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deuterium uptake, desorption and sputtering from W(110) surface covered with oxygen\",\"authors\":\"E. Hodille, Blanche Pavec, J. Denis, Axel Dunand, Yves Ferro, Marco Minissale, T. Angot, Christian Grisolia, R. Bisson\",\"doi\":\"10.1088/1741-4326/ad2a29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Rate equation modelling is performed to simulate D2 and D2+D2\\n + exposure of the W(110) surface with varying coverage of oxygen atoms (O) from the clean surface up to 0.75 monolayer of O. Density functional Theory (DFT) calculated energetics are used as inputs for the surface processes and desorption energies are optimized to best reproduce the thermal desorption spectrometry (TDS) experiments obtained for D2 exposure. For the clean surface, the optimized desorption energies (1.10 eV to 1.40 eV) are below the DFT ones (1.30 eV to 1.50 eV). For the O covered surface, the main desorption peak is reproduced with desorption energies of 1.1 eV and 1.0 eV for 0.50 and 0.75 monolayer of O respectively. This is slightly higher than the DFT predicted desorption energies. In order to simulate satisfactorily the total retention botained experimentally for D2+D2\\n + exposure, a sputtering process needs to be added to the model, describing the sputtering of adsorbed species (D atoms) by the incident D ions. The impact of the sputtering process on the shape of the TDS spectra, on the total retention and on the recycling of D from the wall is discussed. In order to better characterize the sputtering process, especially its products and yields, atomistic calculations such as molecular dynamics are suggested as a next step for this study.\",\"PeriodicalId\":503481,\"journal\":{\"name\":\"Nuclear Fusion\",\"volume\":\"30 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-4326/ad2a29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-4326/ad2a29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
利用密度泛函理论(DFT)计算的能量作为表面过程的输入,并对解吸能量进行了优化,以最好地再现 D2 暴露时获得的热解吸光谱(TDS)实验结果。对于清洁表面,优化后的解吸能量(1.10 eV 至 1.40 eV)低于 DFT 能量(1.30 eV 至 1.50 eV)。对于 O 覆盖的表面,0.50 和 0.75 单层 O 的解吸能分别为 1.1 eV 和 1.0 eV,再现了主要的解吸峰。这比 DFT 预测的解吸能量略高。为了令人满意地模拟 D2+D2 + 暴露实验中的总滞留率,需要在模型中加入溅射过程,描述入射 D 离子对吸附物种(D 原子)的溅射。本文讨论了溅射过程对 TDS 光谱形状、总保留量和 D 从壁回收的影响。为了更好地描述溅射过程,特别是其产物和产量,建议将分子动力学等原子计算作为本研究的下一步。
Deuterium uptake, desorption and sputtering from W(110) surface covered with oxygen
Rate equation modelling is performed to simulate D2 and D2+D2
+ exposure of the W(110) surface with varying coverage of oxygen atoms (O) from the clean surface up to 0.75 monolayer of O. Density functional Theory (DFT) calculated energetics are used as inputs for the surface processes and desorption energies are optimized to best reproduce the thermal desorption spectrometry (TDS) experiments obtained for D2 exposure. For the clean surface, the optimized desorption energies (1.10 eV to 1.40 eV) are below the DFT ones (1.30 eV to 1.50 eV). For the O covered surface, the main desorption peak is reproduced with desorption energies of 1.1 eV and 1.0 eV for 0.50 and 0.75 monolayer of O respectively. This is slightly higher than the DFT predicted desorption energies. In order to simulate satisfactorily the total retention botained experimentally for D2+D2
+ exposure, a sputtering process needs to be added to the model, describing the sputtering of adsorbed species (D atoms) by the incident D ions. The impact of the sputtering process on the shape of the TDS spectra, on the total retention and on the recycling of D from the wall is discussed. In order to better characterize the sputtering process, especially its products and yields, atomistic calculations such as molecular dynamics are suggested as a next step for this study.