Jingyu Ning, Zhenhua Tan, Kaibing Zhang, Weizhong Ye
{"title":"不平衡双方私有集的低通信成本 PSI 协议","authors":"Jingyu Ning, Zhenhua Tan, Kaibing Zhang, Weizhong Ye","doi":"10.1049/2024/6052651","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Two-party private set intersection (PSI) plays a pivotal role in secure two-party computation protocols. The communication cost in a PSI protocol is normally influenced by the sizes of the participating parties. However, for parties with unbalanced sets, the communication costs of existing protocols mainly depend on the size of the larger set, leading to high communication cost. In this paper, we propose a low communication-cost PSI protocol designed specifically for unbalanced two-party private sets, aiming to enhance the efficiency of communication. For each item in the smaller set, the receiver queries whether it belongs to the larger set, such that the communication cost depends solely on the smaller set. The queries are implemented by private information retrieval which is constructed with trapdoor hash function. Our investigation indicates that in each instance of invoking the trapdoor hash function, the receiver is required to transmit both a hash key and an encoding key to the sender, thus incurring significant communication cost. In order to address this concern, we propose the utilization of a seed hash key, a seed encoding key, and a Latin square. By employing these components, the sender can autonomously generate all the necessary hash keys and encoding keys, obviating the multiple transmissions of such keys. The proposed protocol is provably secure against a semihonest adversary under the Decisional Diffie–Hellman assumption. Through implementation demonstration, we showcase that when the sizes of the two sets are 2<sup>8</sup> and 2<sup>14</sup>, the communication cost of our protocol is only 3.3% of the state-of-the-art protocol and under 100 Kbps bandwidth, we achieve 1.46x speedup compared to the state-of-the-art protocol. Our source code is available on GitHub: https://github.com/TAN-OpenLab/Unbanlanced-PSI.</p>\n </div>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"2024 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/6052651","citationCount":"0","resultStr":"{\"title\":\"Low Communication-Cost PSI Protocol for Unbalanced Two-Party Private Sets\",\"authors\":\"Jingyu Ning, Zhenhua Tan, Kaibing Zhang, Weizhong Ye\",\"doi\":\"10.1049/2024/6052651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Two-party private set intersection (PSI) plays a pivotal role in secure two-party computation protocols. The communication cost in a PSI protocol is normally influenced by the sizes of the participating parties. However, for parties with unbalanced sets, the communication costs of existing protocols mainly depend on the size of the larger set, leading to high communication cost. In this paper, we propose a low communication-cost PSI protocol designed specifically for unbalanced two-party private sets, aiming to enhance the efficiency of communication. For each item in the smaller set, the receiver queries whether it belongs to the larger set, such that the communication cost depends solely on the smaller set. The queries are implemented by private information retrieval which is constructed with trapdoor hash function. Our investigation indicates that in each instance of invoking the trapdoor hash function, the receiver is required to transmit both a hash key and an encoding key to the sender, thus incurring significant communication cost. In order to address this concern, we propose the utilization of a seed hash key, a seed encoding key, and a Latin square. By employing these components, the sender can autonomously generate all the necessary hash keys and encoding keys, obviating the multiple transmissions of such keys. The proposed protocol is provably secure against a semihonest adversary under the Decisional Diffie–Hellman assumption. Through implementation demonstration, we showcase that when the sizes of the two sets are 2<sup>8</sup> and 2<sup>14</sup>, the communication cost of our protocol is only 3.3% of the state-of-the-art protocol and under 100 Kbps bandwidth, we achieve 1.46x speedup compared to the state-of-the-art protocol. Our source code is available on GitHub: https://github.com/TAN-OpenLab/Unbanlanced-PSI.</p>\\n </div>\",\"PeriodicalId\":50380,\"journal\":{\"name\":\"IET Information Security\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/6052651\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Information Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/2024/6052651\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/6052651","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Low Communication-Cost PSI Protocol for Unbalanced Two-Party Private Sets
Two-party private set intersection (PSI) plays a pivotal role in secure two-party computation protocols. The communication cost in a PSI protocol is normally influenced by the sizes of the participating parties. However, for parties with unbalanced sets, the communication costs of existing protocols mainly depend on the size of the larger set, leading to high communication cost. In this paper, we propose a low communication-cost PSI protocol designed specifically for unbalanced two-party private sets, aiming to enhance the efficiency of communication. For each item in the smaller set, the receiver queries whether it belongs to the larger set, such that the communication cost depends solely on the smaller set. The queries are implemented by private information retrieval which is constructed with trapdoor hash function. Our investigation indicates that in each instance of invoking the trapdoor hash function, the receiver is required to transmit both a hash key and an encoding key to the sender, thus incurring significant communication cost. In order to address this concern, we propose the utilization of a seed hash key, a seed encoding key, and a Latin square. By employing these components, the sender can autonomously generate all the necessary hash keys and encoding keys, obviating the multiple transmissions of such keys. The proposed protocol is provably secure against a semihonest adversary under the Decisional Diffie–Hellman assumption. Through implementation demonstration, we showcase that when the sizes of the two sets are 28 and 214, the communication cost of our protocol is only 3.3% of the state-of-the-art protocol and under 100 Kbps bandwidth, we achieve 1.46x speedup compared to the state-of-the-art protocol. Our source code is available on GitHub: https://github.com/TAN-OpenLab/Unbanlanced-PSI.
期刊介绍:
IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls.
Scope:
Access Control and Database Security
Ad-Hoc Network Aspects
Anonymity and E-Voting
Authentication
Block Ciphers and Hash Functions
Blockchain, Bitcoin (Technical aspects only)
Broadcast Encryption and Traitor Tracing
Combinatorial Aspects
Covert Channels and Information Flow
Critical Infrastructures
Cryptanalysis
Dependability
Digital Rights Management
Digital Signature Schemes
Digital Steganography
Economic Aspects of Information Security
Elliptic Curve Cryptography and Number Theory
Embedded Systems Aspects
Embedded Systems Security and Forensics
Financial Cryptography
Firewall Security
Formal Methods and Security Verification
Human Aspects
Information Warfare and Survivability
Intrusion Detection
Java and XML Security
Key Distribution
Key Management
Malware
Multi-Party Computation and Threshold Cryptography
Peer-to-peer Security
PKIs
Public-Key and Hybrid Encryption
Quantum Cryptography
Risks of using Computers
Robust Networks
Secret Sharing
Secure Electronic Commerce
Software Obfuscation
Stream Ciphers
Trust Models
Watermarking and Fingerprinting
Special Issues. Current Call for Papers:
Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf