不平衡双方私有集的低通信成本 PSI 协议

IF 1.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jingyu Ning, Zhenhua Tan, Kaibing Zhang, Weizhong Ye
{"title":"不平衡双方私有集的低通信成本 PSI 协议","authors":"Jingyu Ning,&nbsp;Zhenhua Tan,&nbsp;Kaibing Zhang,&nbsp;Weizhong Ye","doi":"10.1049/2024/6052651","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Two-party private set intersection (PSI) plays a pivotal role in secure two-party computation protocols. The communication cost in a PSI protocol is normally influenced by the sizes of the participating parties. However, for parties with unbalanced sets, the communication costs of existing protocols mainly depend on the size of the larger set, leading to high communication cost. In this paper, we propose a low communication-cost PSI protocol designed specifically for unbalanced two-party private sets, aiming to enhance the efficiency of communication. For each item in the smaller set, the receiver queries whether it belongs to the larger set, such that the communication cost depends solely on the smaller set. The queries are implemented by private information retrieval which is constructed with trapdoor hash function. Our investigation indicates that in each instance of invoking the trapdoor hash function, the receiver is required to transmit both a hash key and an encoding key to the sender, thus incurring significant communication cost. In order to address this concern, we propose the utilization of a seed hash key, a seed encoding key, and a Latin square. By employing these components, the sender can autonomously generate all the necessary hash keys and encoding keys, obviating the multiple transmissions of such keys. The proposed protocol is provably secure against a semihonest adversary under the Decisional Diffie–Hellman assumption. Through implementation demonstration, we showcase that when the sizes of the two sets are 2<sup>8</sup> and 2<sup>14</sup>, the communication cost of our protocol is only 3.3% of the state-of-the-art protocol and under 100 Kbps bandwidth, we achieve 1.46x speedup compared to the state-of-the-art protocol. Our source code is available on GitHub: https://github.com/TAN-OpenLab/Unbanlanced-PSI.</p>\n </div>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"2024 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/6052651","citationCount":"0","resultStr":"{\"title\":\"Low Communication-Cost PSI Protocol for Unbalanced Two-Party Private Sets\",\"authors\":\"Jingyu Ning,&nbsp;Zhenhua Tan,&nbsp;Kaibing Zhang,&nbsp;Weizhong Ye\",\"doi\":\"10.1049/2024/6052651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Two-party private set intersection (PSI) plays a pivotal role in secure two-party computation protocols. The communication cost in a PSI protocol is normally influenced by the sizes of the participating parties. However, for parties with unbalanced sets, the communication costs of existing protocols mainly depend on the size of the larger set, leading to high communication cost. In this paper, we propose a low communication-cost PSI protocol designed specifically for unbalanced two-party private sets, aiming to enhance the efficiency of communication. For each item in the smaller set, the receiver queries whether it belongs to the larger set, such that the communication cost depends solely on the smaller set. The queries are implemented by private information retrieval which is constructed with trapdoor hash function. Our investigation indicates that in each instance of invoking the trapdoor hash function, the receiver is required to transmit both a hash key and an encoding key to the sender, thus incurring significant communication cost. In order to address this concern, we propose the utilization of a seed hash key, a seed encoding key, and a Latin square. By employing these components, the sender can autonomously generate all the necessary hash keys and encoding keys, obviating the multiple transmissions of such keys. The proposed protocol is provably secure against a semihonest adversary under the Decisional Diffie–Hellman assumption. Through implementation demonstration, we showcase that when the sizes of the two sets are 2<sup>8</sup> and 2<sup>14</sup>, the communication cost of our protocol is only 3.3% of the state-of-the-art protocol and under 100 Kbps bandwidth, we achieve 1.46x speedup compared to the state-of-the-art protocol. Our source code is available on GitHub: https://github.com/TAN-OpenLab/Unbanlanced-PSI.</p>\\n </div>\",\"PeriodicalId\":50380,\"journal\":{\"name\":\"IET Information Security\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/6052651\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Information Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/2024/6052651\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/6052651","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

双方私有集合交集(PSI)在安全的双方计算协议中起着举足轻重的作用。PSI 协议中的通信成本通常受参与方规模的影响。然而,对于具有不平衡集合的各方,现有协议的通信成本主要取决于较大集合的大小,从而导致高通信成本。本文提出了一种低通信成本的 PSI 协议,专为不平衡的双方私有集合设计,旨在提高通信效率。对于小集合中的每个项目,接收方都要查询它是否属于大集合,这样通信成本就完全取决于小集合。查询是通过使用陷阱门散列函数构建的私有信息检索来实现的。我们的研究表明,在每次调用陷阱门散列函数时,接收方都需要向发送方传输散列密钥和编码密钥,因此会产生巨大的通信成本。为了解决这个问题,我们建议使用种子散列密钥、种子编码密钥和拉丁方块。通过使用这些组件,发送方可以自主生成所有必要的哈希密钥和编码密钥,从而避免了此类密钥的多次传输。在决定性迪菲-赫尔曼假设下,所提出的协议可以证明是安全的,可以对抗半无敌对手。通过实施演示,我们展示了当两个集合的大小分别为 28 和 214 时,我们协议的通信成本仅为最新协议的 3.3%;在 100 Kbps 带宽下,我们的速度是最新协议的 1.46 倍。我们的源代码可在 GitHub 上获取:https://github.com/TAN-OpenLab/Unbanlanced-PSI。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Low Communication-Cost PSI Protocol for Unbalanced Two-Party Private Sets

Low Communication-Cost PSI Protocol for Unbalanced Two-Party Private Sets

Two-party private set intersection (PSI) plays a pivotal role in secure two-party computation protocols. The communication cost in a PSI protocol is normally influenced by the sizes of the participating parties. However, for parties with unbalanced sets, the communication costs of existing protocols mainly depend on the size of the larger set, leading to high communication cost. In this paper, we propose a low communication-cost PSI protocol designed specifically for unbalanced two-party private sets, aiming to enhance the efficiency of communication. For each item in the smaller set, the receiver queries whether it belongs to the larger set, such that the communication cost depends solely on the smaller set. The queries are implemented by private information retrieval which is constructed with trapdoor hash function. Our investigation indicates that in each instance of invoking the trapdoor hash function, the receiver is required to transmit both a hash key and an encoding key to the sender, thus incurring significant communication cost. In order to address this concern, we propose the utilization of a seed hash key, a seed encoding key, and a Latin square. By employing these components, the sender can autonomously generate all the necessary hash keys and encoding keys, obviating the multiple transmissions of such keys. The proposed protocol is provably secure against a semihonest adversary under the Decisional Diffie–Hellman assumption. Through implementation demonstration, we showcase that when the sizes of the two sets are 28 and 214, the communication cost of our protocol is only 3.3% of the state-of-the-art protocol and under 100 Kbps bandwidth, we achieve 1.46x speedup compared to the state-of-the-art protocol. Our source code is available on GitHub: https://github.com/TAN-OpenLab/Unbanlanced-PSI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Information Security
IET Information Security 工程技术-计算机:理论方法
CiteScore
3.80
自引率
7.10%
发文量
47
审稿时长
8.6 months
期刊介绍: IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls. Scope: Access Control and Database Security Ad-Hoc Network Aspects Anonymity and E-Voting Authentication Block Ciphers and Hash Functions Blockchain, Bitcoin (Technical aspects only) Broadcast Encryption and Traitor Tracing Combinatorial Aspects Covert Channels and Information Flow Critical Infrastructures Cryptanalysis Dependability Digital Rights Management Digital Signature Schemes Digital Steganography Economic Aspects of Information Security Elliptic Curve Cryptography and Number Theory Embedded Systems Aspects Embedded Systems Security and Forensics Financial Cryptography Firewall Security Formal Methods and Security Verification Human Aspects Information Warfare and Survivability Intrusion Detection Java and XML Security Key Distribution Key Management Malware Multi-Party Computation and Threshold Cryptography Peer-to-peer Security PKIs Public-Key and Hybrid Encryption Quantum Cryptography Risks of using Computers Robust Networks Secret Sharing Secure Electronic Commerce Software Obfuscation Stream Ciphers Trust Models Watermarking and Fingerprinting Special Issues. Current Call for Papers: Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信