{"title":"具有最大单调图和诺伊曼型边界条件的 p(x)-Laplacian 样问题的结构稳定性","authors":"S. Ouaro, Kpê Kansié","doi":"10.56947/amcs.v21.247","DOIUrl":null,"url":null,"abstract":"\n \n \nIn this work, we study the convergence of a sequence of solutions of degener- ate elliptic problems with variable coercivity and growth exponents. The functional setting involves Lebesgue and Sobolev spaces with variable exponent which varies also with n. \n \n \n","PeriodicalId":504658,"journal":{"name":"Annals of Mathematics and Computer Science","volume":"63 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural stability of p(x)-Laplacian kind problems with maximal monotone graphs and Neumann type boundary condition\",\"authors\":\"S. Ouaro, Kpê Kansié\",\"doi\":\"10.56947/amcs.v21.247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n \\nIn this work, we study the convergence of a sequence of solutions of degener- ate elliptic problems with variable coercivity and growth exponents. The functional setting involves Lebesgue and Sobolev spaces with variable exponent which varies also with n. \\n \\n \\n\",\"PeriodicalId\":504658,\"journal\":{\"name\":\"Annals of Mathematics and Computer Science\",\"volume\":\"63 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56947/amcs.v21.247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56947/amcs.v21.247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在这项工作中,我们研究了具有可变矫顽力和增长指数的退化椭圆问题解序列的收敛性。函数设置涉及具有可变指数的 Lebesgue 和 Sobolev 空间,指数也随 n 变化。
Structural stability of p(x)-Laplacian kind problems with maximal monotone graphs and Neumann type boundary condition
In this work, we study the convergence of a sequence of solutions of degener- ate elliptic problems with variable coercivity and growth exponents. The functional setting involves Lebesgue and Sobolev spaces with variable exponent which varies also with n.